Metamath Proof Explorer


Theorem xkofvcn

Description: Joint continuity of the function value operation as a function on continuous function spaces. (Compare xkopjcn .) (Contributed by Mario Carneiro, 20-Mar-2015) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses xkofvcn.1 X=R
xkofvcn.2 F=fRCnS,xXfx
Assertion xkofvcn RN-Locally Comp STop FS^koR×tRCnS

Proof

Step Hyp Ref Expression
1 xkofvcn.1 X=R
2 xkofvcn.2 F=fRCnS,xXfx
3 nllytop RN-Locally Comp RTop
4 eqid S^koR=S^koR
5 4 xkotopon RTopSTopS^koRTopOnRCnS
6 3 5 sylan RN-Locally Comp STop S^koRTopOnRCnS
7 3 adantr RN-Locally Comp STop RTop
8 1 toptopon RTopRTopOnX
9 7 8 sylib RN-Locally Comp STop RTopOnX
10 6 9 cnmpt1st RN-Locally Comp STop fRCnS,xXfS^koR×tRCnS^koR
11 6 9 cnmpt2nd RN-Locally Comp STop fRCnS,xXxS^koR×tRCnR
12 1on 1𝑜On
13 distopon 1𝑜On𝒫1𝑜TopOn1𝑜
14 12 13 mp1i RN-Locally Comp STop 𝒫1𝑜TopOn1𝑜
15 xkoccn 𝒫1𝑜TopOn1𝑜RTopOnXyX1𝑜×yRCnR^ko𝒫1𝑜
16 14 9 15 syl2anc RN-Locally Comp STop yX1𝑜×yRCnR^ko𝒫1𝑜
17 sneq y=xy=x
18 17 xpeq2d y=x1𝑜×y=1𝑜×x
19 6 9 11 9 16 18 cnmpt21 RN-Locally Comp STop fRCnS,xX1𝑜×xS^koR×tRCnR^ko𝒫1𝑜
20 distop 1𝑜On𝒫1𝑜Top
21 12 20 mp1i RN-Locally Comp STop 𝒫1𝑜Top
22 eqid R^ko𝒫1𝑜=R^ko𝒫1𝑜
23 22 xkotopon 𝒫1𝑜TopRTopR^ko𝒫1𝑜TopOn𝒫1𝑜CnR
24 21 7 23 syl2anc RN-Locally Comp STop R^ko𝒫1𝑜TopOn𝒫1𝑜CnR
25 simpl RN-Locally Comp STop RN-Locally Comp
26 simpr RN-Locally Comp STop STop
27 eqid gRCnS,h𝒫1𝑜CnRgh=gRCnS,h𝒫1𝑜CnRgh
28 27 xkococn 𝒫1𝑜TopRN-Locally Comp STop gRCnS,h𝒫1𝑜CnRghS^koR×tR^ko𝒫1𝑜CnS^ko𝒫1𝑜
29 21 25 26 28 syl3anc RN-Locally Comp STop gRCnS,h𝒫1𝑜CnRghS^koR×tR^ko𝒫1𝑜CnS^ko𝒫1𝑜
30 coeq1 g=fgh=fh
31 coeq2 h=1𝑜×xfh=f1𝑜×x
32 30 31 sylan9eq g=fh=1𝑜×xgh=f1𝑜×x
33 6 9 10 19 6 24 29 32 cnmpt22 RN-Locally Comp STop fRCnS,xXf1𝑜×xS^koR×tRCnS^ko𝒫1𝑜
34 eqid S^ko𝒫1𝑜=S^ko𝒫1𝑜
35 34 xkotopon 𝒫1𝑜TopSTopS^ko𝒫1𝑜TopOn𝒫1𝑜CnS
36 21 26 35 syl2anc RN-Locally Comp STop S^ko𝒫1𝑜TopOn𝒫1𝑜CnS
37 0lt1o 1𝑜
38 37 a1i RN-Locally Comp STop 1𝑜
39 unipw 𝒫1𝑜=1𝑜
40 39 eqcomi 1𝑜=𝒫1𝑜
41 40 xkopjcn 𝒫1𝑜TopSTop1𝑜g𝒫1𝑜CnSgS^ko𝒫1𝑜CnS
42 21 26 38 41 syl3anc RN-Locally Comp STop g𝒫1𝑜CnSgS^ko𝒫1𝑜CnS
43 fveq1 g=f1𝑜×xg=f1𝑜×x
44 vex xV
45 44 fconst 1𝑜×x:1𝑜x
46 fvco3 1𝑜×x:1𝑜x1𝑜f1𝑜×x=f1𝑜×x
47 45 37 46 mp2an f1𝑜×x=f1𝑜×x
48 44 fvconst2 1𝑜1𝑜×x=x
49 37 48 ax-mp 1𝑜×x=x
50 49 fveq2i f1𝑜×x=fx
51 47 50 eqtri f1𝑜×x=fx
52 43 51 eqtrdi g=f1𝑜×xg=fx
53 6 9 33 36 42 52 cnmpt21 RN-Locally Comp STop fRCnS,xXfxS^koR×tRCnS
54 2 53 eqeltrid RN-Locally Comp STop FS^koR×tRCnS