Metamath Proof Explorer


Theorem cnmptkk

Description: The composition of two curried functions is jointly continuous. (Contributed by Mario Carneiro, 23-Mar-2015) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses cnmptkk.j φJTopOnX
cnmptkk.k φKTopOnY
cnmptkk.l φLTopOnZ
cnmptkk.m φMTopOnW
cnmptkk.n φLN-Locally Comp
cnmptkk.a φxXyYAJCnL^koK
cnmptkk.b φxXzZBJCnM^koL
cnmptkk.c z=AB=C
Assertion cnmptkk φxXyYCJCnM^koK

Proof

Step Hyp Ref Expression
1 cnmptkk.j φJTopOnX
2 cnmptkk.k φKTopOnY
3 cnmptkk.l φLTopOnZ
4 cnmptkk.m φMTopOnW
5 cnmptkk.n φLN-Locally Comp
6 cnmptkk.a φxXyYAJCnL^koK
7 cnmptkk.b φxXzZBJCnM^koL
8 cnmptkk.c z=AB=C
9 2 adantr φxXKTopOnY
10 3 adantr φxXLTopOnZ
11 topontop KTopOnYKTop
12 2 11 syl φKTop
13 nllytop LN-Locally Comp LTop
14 5 13 syl φLTop
15 eqid L^koK=L^koK
16 15 xkotopon KTopLTopL^koKTopOnKCnL
17 12 14 16 syl2anc φL^koKTopOnKCnL
18 cnf2 JTopOnXL^koKTopOnKCnLxXyYAJCnL^koKxXyYA:XKCnL
19 1 17 6 18 syl3anc φxXyYA:XKCnL
20 19 fvmptelcdm φxXyYAKCnL
21 cnf2 KTopOnYLTopOnZyYAKCnLyYA:YZ
22 9 10 20 21 syl3anc φxXyYA:YZ
23 eqid yYA=yYA
24 23 fmpt yYAZyYA:YZ
25 22 24 sylibr φxXyYAZ
26 eqidd φxXyYA=yYA
27 eqidd φxXzZB=zZB
28 25 26 27 8 fmptcof φxXzZByYA=yYC
29 28 mpteq2dva φxXzZByYA=xXyYC
30 topontop MTopOnWMTop
31 4 30 syl φMTop
32 eqid M^koL=M^koL
33 32 xkotopon LTopMTopM^koLTopOnLCnM
34 14 31 33 syl2anc φM^koLTopOnLCnM
35 eqid fLCnM,gKCnLfg=fLCnM,gKCnLfg
36 35 xkococn KTopLN-Locally Comp MTop fLCnM,gKCnLfgM^koL×tL^koKCnM^koK
37 12 5 31 36 syl3anc φfLCnM,gKCnLfgM^koL×tL^koKCnM^koK
38 coeq1 f=zZBfg=zZBg
39 coeq2 g=yYAzZBg=zZByYA
40 38 39 sylan9eq f=zZBg=yYAfg=zZByYA
41 1 7 6 34 17 37 40 cnmpt12 φxXzZByYAJCnM^koK
42 29 41 eqeltrrd φxXyYCJCnM^koK