Metamath Proof Explorer


Theorem cnmsgn0g

Description: The neutral element of the sign subgroup of the complex numbers. (Contributed by Thierry Arnoux, 1-Nov-2023)

Ref Expression
Hypothesis cnmsgn0g.1 U=mulGrpfld𝑠11
Assertion cnmsgn0g 1=0U

Proof

Step Hyp Ref Expression
1 cnmsgn0g.1 U=mulGrpfld𝑠11
2 cnring fldRing
3 eqid mulGrpfld=mulGrpfld
4 3 ringmgp fldRingmulGrpfldMnd
5 2 4 ax-mp mulGrpfldMnd
6 1ex 1V
7 6 prid1 111
8 ax-1cn 1
9 neg1cn 1
10 prssi 1111
11 8 9 10 mp2an 11
12 cnfldbas =Basefld
13 3 12 mgpbas =BasemulGrpfld
14 cnfld1 1=1fld
15 3 14 ringidval 1=0mulGrpfld
16 1 13 15 ress0g mulGrpfldMnd111111=0U
17 5 7 11 16 mp3an 1=0U