| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnmgpabl.m |  | 
						
							| 2 |  | cnmsubglem.1 |  | 
						
							| 3 |  | cnmsubglem.2 |  | 
						
							| 4 |  | cnmsubglem.3 |  | 
						
							| 5 |  | cnmsubglem.4 |  | 
						
							| 6 |  | cnmsubglem.5 |  | 
						
							| 7 |  | eldifsn |  | 
						
							| 8 | 2 3 7 | sylanbrc |  | 
						
							| 9 | 8 | ssriv |  | 
						
							| 10 | 5 | ne0ii |  | 
						
							| 11 | 4 | ralrimiva |  | 
						
							| 12 |  | cnfldinv |  | 
						
							| 13 | 2 3 12 | syl2anc |  | 
						
							| 14 | 13 6 | eqeltrd |  | 
						
							| 15 | 11 14 | jca |  | 
						
							| 16 | 15 | rgen |  | 
						
							| 17 | 1 | cnmgpabl |  | 
						
							| 18 |  | ablgrp |  | 
						
							| 19 |  | difss |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 |  | cnfldbas |  | 
						
							| 22 | 20 21 | mgpbas |  | 
						
							| 23 | 1 22 | ressbas2 |  | 
						
							| 24 | 19 23 | ax-mp |  | 
						
							| 25 |  | cnex |  | 
						
							| 26 |  | difexg |  | 
						
							| 27 |  | cnfldmul |  | 
						
							| 28 | 20 27 | mgpplusg |  | 
						
							| 29 | 1 28 | ressplusg |  | 
						
							| 30 | 25 26 29 | mp2b |  | 
						
							| 31 |  | cnfld0 |  | 
						
							| 32 |  | cndrng |  | 
						
							| 33 | 21 31 32 | drngui |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 | 33 1 34 | invrfval |  | 
						
							| 36 | 24 30 35 | issubg2 |  | 
						
							| 37 | 17 18 36 | mp2b |  | 
						
							| 38 | 9 10 16 37 | mpbir3an |  |