Description: Lemma for rpmsubg and friends. (Contributed by Mario Carneiro, 21-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cnmgpabl.m | |
|
cnmsubglem.1 | |
||
cnmsubglem.2 | |
||
cnmsubglem.3 | |
||
cnmsubglem.4 | |
||
cnmsubglem.5 | |
||
Assertion | cnmsubglem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmgpabl.m | |
|
2 | cnmsubglem.1 | |
|
3 | cnmsubglem.2 | |
|
4 | cnmsubglem.3 | |
|
5 | cnmsubglem.4 | |
|
6 | cnmsubglem.5 | |
|
7 | eldifsn | |
|
8 | 2 3 7 | sylanbrc | |
9 | 8 | ssriv | |
10 | 5 | ne0ii | |
11 | 4 | ralrimiva | |
12 | cnfldinv | |
|
13 | 2 3 12 | syl2anc | |
14 | 13 6 | eqeltrd | |
15 | 11 14 | jca | |
16 | 15 | rgen | |
17 | 1 | cnmgpabl | |
18 | ablgrp | |
|
19 | difss | |
|
20 | eqid | |
|
21 | cnfldbas | |
|
22 | 20 21 | mgpbas | |
23 | 1 22 | ressbas2 | |
24 | 19 23 | ax-mp | |
25 | cnex | |
|
26 | difexg | |
|
27 | cnfldmul | |
|
28 | 20 27 | mgpplusg | |
29 | 1 28 | ressplusg | |
30 | 25 26 29 | mp2b | |
31 | cnfld0 | |
|
32 | cndrng | |
|
33 | 21 31 32 | drngui | |
34 | eqid | |
|
35 | 33 1 34 | invrfval | |
36 | 24 30 35 | issubg2 | |
37 | 17 18 36 | mp2b | |
38 | 9 10 16 37 | mpbir3an | |