Metamath Proof Explorer


Theorem cnmsubglem

Description: Lemma for rpmsubg and friends. (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Hypotheses cnmgpabl.m M=mulGrpfld𝑠0
cnmsubglem.1 xAx
cnmsubglem.2 xAx0
cnmsubglem.3 xAyAxyA
cnmsubglem.4 1A
cnmsubglem.5 xA1xA
Assertion cnmsubglem ASubGrpM

Proof

Step Hyp Ref Expression
1 cnmgpabl.m M=mulGrpfld𝑠0
2 cnmsubglem.1 xAx
3 cnmsubglem.2 xAx0
4 cnmsubglem.3 xAyAxyA
5 cnmsubglem.4 1A
6 cnmsubglem.5 xA1xA
7 eldifsn x0xx0
8 2 3 7 sylanbrc xAx0
9 8 ssriv A0
10 5 ne0ii A
11 4 ralrimiva xAyAxyA
12 cnfldinv xx0invrfldx=1x
13 2 3 12 syl2anc xAinvrfldx=1x
14 13 6 eqeltrd xAinvrfldxA
15 11 14 jca xAyAxyAinvrfldxA
16 15 rgen xAyAxyAinvrfldxA
17 1 cnmgpabl MAbel
18 ablgrp MAbelMGrp
19 difss 0
20 eqid mulGrpfld=mulGrpfld
21 cnfldbas =Basefld
22 20 21 mgpbas =BasemulGrpfld
23 1 22 ressbas2 00=BaseM
24 19 23 ax-mp 0=BaseM
25 cnex V
26 difexg V0V
27 cnfldmul ×=fld
28 20 27 mgpplusg ×=+mulGrpfld
29 1 28 ressplusg 0V×=+M
30 25 26 29 mp2b ×=+M
31 cnfld0 0=0fld
32 cndrng fldDivRing
33 21 31 32 drngui 0=Unitfld
34 eqid invrfld=invrfld
35 33 1 34 invrfval invrfld=invgM
36 24 30 35 issubg2 MGrpASubGrpMA0AxAyAxyAinvrfldxA
37 17 18 36 mp2b ASubGrpMA0AxAyAxyAinvrfldxA
38 9 10 16 37 mpbir3an ASubGrpM