Metamath Proof Explorer


Theorem cnneiima

Description: Given a continuous function, the preimage of a neighborhood is a neighborhood. To be precise, the preimage of a neighborhood of a subset T of the codomain of a continuous function is a neighborhood of any subset of the preimage of T . (Contributed by Zhi Wang, 9-Sep-2024)

Ref Expression
Hypotheses cnneiima.1 φFJCnK
cnneiima.2 φNneiKT
cnneiima.3 φSF-1T
Assertion cnneiima φF-1NneiJS

Proof

Step Hyp Ref Expression
1 cnneiima.1 φFJCnK
2 cnneiima.2 φNneiKT
3 cnneiima.3 φSF-1T
4 eqid J=J
5 eqid K=K
6 4 5 cnf FJCnKF:JK
7 1 6 syl φF:JK
8 7 ffund φFunF
9 cntop2 FJCnKKTop
10 1 9 syl φKTop
11 5 neiss2 KTopNneiKTTK
12 10 2 11 syl2anc φTK
13 5 neii1 KTopNneiKTNK
14 10 2 13 syl2anc φNK
15 5 neiint KTopTKNKNneiKTTintKN
16 10 12 14 15 syl3anc φNneiKTTintKN
17 2 16 mpbid φTintKN
18 sspreima FunFTintKNF-1TF-1intKN
19 8 17 18 syl2anc φF-1TF-1intKN
20 3 19 sstrd φSF-1intKN
21 5 cnntri FJCnKNKF-1intKNintJF-1N
22 1 14 21 syl2anc φF-1intKNintJF-1N
23 20 22 sstrd φSintJF-1N
24 cntop1 FJCnKJTop
25 1 24 syl φJTop
26 sspreima FunFTKF-1TF-1K
27 8 12 26 syl2anc φF-1TF-1K
28 fimacnv F:JKF-1K=J
29 7 28 syl φF-1K=J
30 27 29 sseqtrd φF-1TJ
31 3 30 sstrd φSJ
32 sspreima FunFNKF-1NF-1K
33 8 14 32 syl2anc φF-1NF-1K
34 33 29 sseqtrd φF-1NJ
35 4 neiint JTopSJF-1NJF-1NneiJSSintJF-1N
36 25 31 34 35 syl3anc φF-1NneiJSSintJF-1N
37 23 36 mpbird φF-1NneiJS