Description: Given a continuous function, the preimage of a neighborhood is a neighborhood. To be precise, the preimage of a neighborhood of a subset T of the codomain of a continuous function is a neighborhood of any subset of the preimage of T . (Contributed by Zhi Wang, 9-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cnneiima.1 | |
|
cnneiima.2 | |
||
cnneiima.3 | |
||
Assertion | cnneiima | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnneiima.1 | |
|
2 | cnneiima.2 | |
|
3 | cnneiima.3 | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | 4 5 | cnf | |
7 | 1 6 | syl | |
8 | 7 | ffund | |
9 | cntop2 | |
|
10 | 1 9 | syl | |
11 | 5 | neiss2 | |
12 | 10 2 11 | syl2anc | |
13 | 5 | neii1 | |
14 | 10 2 13 | syl2anc | |
15 | 5 | neiint | |
16 | 10 12 14 15 | syl3anc | |
17 | 2 16 | mpbid | |
18 | sspreima | |
|
19 | 8 17 18 | syl2anc | |
20 | 3 19 | sstrd | |
21 | 5 | cnntri | |
22 | 1 14 21 | syl2anc | |
23 | 20 22 | sstrd | |
24 | cntop1 | |
|
25 | 1 24 | syl | |
26 | sspreima | |
|
27 | 8 12 26 | syl2anc | |
28 | fimacnv | |
|
29 | 7 28 | syl | |
30 | 27 29 | sseqtrd | |
31 | 3 30 | sstrd | |
32 | sspreima | |
|
33 | 8 14 32 | syl2anc | |
34 | 33 29 | sseqtrd | |
35 | 4 | neiint | |
36 | 25 31 34 35 | syl3anc | |
37 | 23 36 | mpbird | |