Metamath Proof Explorer


Theorem cnvcnvintabd

Description: Value of the relationship content of the intersection of a class. (Contributed by RP, 20-Aug-2020)

Ref Expression
Hypothesis cnvcnvintabd.x φxψ
Assertion cnvcnvintabd φx|ψ-1-1=w𝒫V×V|xw=x-1-1ψ

Proof

Step Hyp Ref Expression
1 cnvcnvintabd.x φxψ
2 cnvcnv x-1-1=xV×V
3 2 eleq2i yx-1-1yxV×V
4 elin yxV×VyxyV×V
5 4 rbaib yV×VyxV×Vyx
6 3 5 bitrid yV×Vyx-1-1yx
7 6 bicomd yV×Vyxyx-1-1
8 7 imbi2d yV×Vψyxψyx-1-1
9 8 albidv yV×Vxψyxxψyx-1-1
10 9 pm5.32i yV×VxψyxyV×Vxψyx-1-1
11 pm5.5 xψxψyV×VyV×V
12 1 11 syl φxψyV×VyV×V
13 12 bicomd φyV×VxψyV×V
14 13 anbi1d φyV×Vxψyx-1-1xψyV×Vxψyx-1-1
15 10 14 bitrid φyV×VxψyxxψyV×Vxψyx-1-1
16 elcnvcnvintab yx|ψ-1-1yV×Vxψyx
17 vex xV
18 cnvexg xVx-1V
19 cnvexg x-1Vx-1-1V
20 17 18 19 mp2b x-1-1V
21 relcnv Relx-1-1
22 df-rel Relx-1-1x-1-1V×V
23 21 22 mpbi x-1-1V×V
24 20 23 elmapintrab yVyw𝒫V×V|xw=x-1-1ψxψyV×Vxψyx-1-1
25 24 elv yw𝒫V×V|xw=x-1-1ψxψyV×Vxψyx-1-1
26 15 16 25 3bitr4g φyx|ψ-1-1yw𝒫V×V|xw=x-1-1ψ
27 26 eqrdv φx|ψ-1-1=w𝒫V×V|xw=x-1-1ψ