Metamath Proof Explorer


Theorem cocanfo

Description: Cancellation of a surjective function from the right side of a composition. (Contributed by Jeff Madsen, 1-Jun-2011) (Proof shortened by Mario Carneiro, 27-Dec-2014)

Ref Expression
Assertion cocanfo F:AontoBGFnBHFnBGF=HFG=H

Proof

Step Hyp Ref Expression
1 simplr F:AontoBGFnBHFnBGF=HFyAGF=HF
2 1 fveq1d F:AontoBGFnBHFnBGF=HFyAGFy=HFy
3 simpl1 F:AontoBGFnBHFnBGF=HFF:AontoB
4 fof F:AontoBF:AB
5 3 4 syl F:AontoBGFnBHFnBGF=HFF:AB
6 fvco3 F:AByAGFy=GFy
7 5 6 sylan F:AontoBGFnBHFnBGF=HFyAGFy=GFy
8 fvco3 F:AByAHFy=HFy
9 5 8 sylan F:AontoBGFnBHFnBGF=HFyAHFy=HFy
10 2 7 9 3eqtr3d F:AontoBGFnBHFnBGF=HFyAGFy=HFy
11 10 ralrimiva F:AontoBGFnBHFnBGF=HFyAGFy=HFy
12 fveq2 Fy=xGFy=Gx
13 fveq2 Fy=xHFy=Hx
14 12 13 eqeq12d Fy=xGFy=HFyGx=Hx
15 14 cbvfo F:AontoByAGFy=HFyxBGx=Hx
16 3 15 syl F:AontoBGFnBHFnBGF=HFyAGFy=HFyxBGx=Hx
17 11 16 mpbid F:AontoBGFnBHFnBGF=HFxBGx=Hx
18 eqfnfv GFnBHFnBG=HxBGx=Hx
19 18 3adant1 F:AontoBGFnBHFnBG=HxBGx=Hx
20 19 adantr F:AontoBGFnBHFnBGF=HFG=HxBGx=Hx
21 17 20 mpbird F:AontoBGFnBHFnBGF=HFG=H