Metamath Proof Explorer


Theorem coe1addfv

Description: A particular coefficient of an addition. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses coe1add.y Y=Poly1R
coe1add.b B=BaseY
coe1add.p ˙=+Y
coe1add.q +˙=+R
Assertion coe1addfv RRingFBGBX0coe1F˙GX=coe1FX+˙coe1GX

Proof

Step Hyp Ref Expression
1 coe1add.y Y=Poly1R
2 coe1add.b B=BaseY
3 coe1add.p ˙=+Y
4 coe1add.q +˙=+R
5 1 2 3 4 coe1add RRingFBGBcoe1F˙G=coe1F+˙fcoe1G
6 5 adantr RRingFBGBX0coe1F˙G=coe1F+˙fcoe1G
7 6 fveq1d RRingFBGBX0coe1F˙GX=coe1F+˙fcoe1GX
8 eqid coe1F=coe1F
9 eqid BaseR=BaseR
10 8 2 1 9 coe1f FBcoe1F:0BaseR
11 10 ffnd FBcoe1FFn0
12 11 3ad2ant2 RRingFBGBcoe1FFn0
13 12 adantr RRingFBGBX0coe1FFn0
14 eqid coe1G=coe1G
15 14 2 1 9 coe1f GBcoe1G:0BaseR
16 15 ffnd GBcoe1GFn0
17 16 3ad2ant3 RRingFBGBcoe1GFn0
18 17 adantr RRingFBGBX0coe1GFn0
19 nn0ex 0V
20 19 a1i RRingFBGBX00V
21 simpr RRingFBGBX0X0
22 fnfvof coe1FFn0coe1GFn00VX0coe1F+˙fcoe1GX=coe1FX+˙coe1GX
23 13 18 20 21 22 syl22anc RRingFBGBX0coe1F+˙fcoe1GX=coe1FX+˙coe1GX
24 7 23 eqtrd RRingFBGBX0coe1F˙GX=coe1FX+˙coe1GX