Metamath Proof Explorer


Theorem cofipsgn

Description: Composition of any class Y and the sign function for a finite permutation. (Contributed by AV, 27-Dec-2018) (Revised by AV, 3-Jul-2022)

Ref Expression
Hypotheses cofipsgn.p P=BaseSymGrpN
cofipsgn.s S=pmSgnN
Assertion cofipsgn NFinQPYSQ=YSQ

Proof

Step Hyp Ref Expression
1 cofipsgn.p P=BaseSymGrpN
2 cofipsgn.s S=pmSgnN
3 eqid SymGrpN=SymGrpN
4 eqid pP|dompIFin=pP|dompIFin
5 3 1 4 2 psgnfn SFnpP|dompIFin
6 difeq1 p=QpI=QI
7 6 dmeqd p=QdompI=domQI
8 7 eleq1d p=QdompIFindomQIFin
9 simpr NFinQPQP
10 3 1 sygbasnfpfi NFinQPdomQIFin
11 8 9 10 elrabd NFinQPQpP|dompIFin
12 fvco2 SFnpP|dompIFinQpP|dompIFinYSQ=YSQ
13 5 11 12 sylancr NFinQPYSQ=YSQ