Metamath Proof Explorer


Theorem cofu1

Description: Value of the object part of the functor composition. (Contributed by Mario Carneiro, 28-Jan-2017)

Ref Expression
Hypotheses cofuval.b B=BaseC
cofuval.f φFCFuncD
cofuval.g φGDFuncE
cofu2nd.x φXB
Assertion cofu1 φ1stGfuncFX=1stG1stFX

Proof

Step Hyp Ref Expression
1 cofuval.b B=BaseC
2 cofuval.f φFCFuncD
3 cofuval.g φGDFuncE
4 cofu2nd.x φXB
5 1 2 3 cofu1st φ1stGfuncF=1stG1stF
6 5 fveq1d φ1stGfuncFX=1stG1stFX
7 eqid BaseD=BaseD
8 relfunc RelCFuncD
9 1st2ndbr RelCFuncDFCFuncD1stFCFuncD2ndF
10 8 2 9 sylancr φ1stFCFuncD2ndF
11 1 7 10 funcf1 φ1stF:BBaseD
12 fvco3 1stF:BBaseDXB1stG1stFX=1stG1stFX
13 11 4 12 syl2anc φ1stG1stFX=1stG1stFX
14 6 13 eqtrd φ1stGfuncFX=1stG1stFX