Metamath Proof Explorer


Theorem cofuval2

Description: Value of the composition of two functors. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses cofuval2.b B = Base C
cofuval2.f φ F C Func D G
cofuval2.x φ H D Func E K
Assertion cofuval2 φ H K func F G = H F x B , y B F x K F y x G y

Proof

Step Hyp Ref Expression
1 cofuval2.b B = Base C
2 cofuval2.f φ F C Func D G
3 cofuval2.x φ H D Func E K
4 df-br F C Func D G F G C Func D
5 2 4 sylib φ F G C Func D
6 df-br H D Func E K H K D Func E
7 3 6 sylib φ H K D Func E
8 1 5 7 cofuval φ H K func F G = 1 st H K 1 st F G x B , y B 1 st F G x 2 nd H K 1 st F G y x 2 nd F G y
9 relfunc Rel D Func E
10 brrelex12 Rel D Func E H D Func E K H V K V
11 9 3 10 sylancr φ H V K V
12 op1stg H V K V 1 st H K = H
13 11 12 syl φ 1 st H K = H
14 relfunc Rel C Func D
15 brrelex12 Rel C Func D F C Func D G F V G V
16 14 2 15 sylancr φ F V G V
17 op1stg F V G V 1 st F G = F
18 16 17 syl φ 1 st F G = F
19 13 18 coeq12d φ 1 st H K 1 st F G = H F
20 op2ndg H V K V 2 nd H K = K
21 11 20 syl φ 2 nd H K = K
22 21 3ad2ant1 φ x B y B 2 nd H K = K
23 18 3ad2ant1 φ x B y B 1 st F G = F
24 23 fveq1d φ x B y B 1 st F G x = F x
25 23 fveq1d φ x B y B 1 st F G y = F y
26 22 24 25 oveq123d φ x B y B 1 st F G x 2 nd H K 1 st F G y = F x K F y
27 op2ndg F V G V 2 nd F G = G
28 16 27 syl φ 2 nd F G = G
29 28 3ad2ant1 φ x B y B 2 nd F G = G
30 29 oveqd φ x B y B x 2 nd F G y = x G y
31 26 30 coeq12d φ x B y B 1 st F G x 2 nd H K 1 st F G y x 2 nd F G y = F x K F y x G y
32 31 mpoeq3dva φ x B , y B 1 st F G x 2 nd H K 1 st F G y x 2 nd F G y = x B , y B F x K F y x G y
33 19 32 opeq12d φ 1 st H K 1 st F G x B , y B 1 st F G x 2 nd H K 1 st F G y x 2 nd F G y = H F x B , y B F x K F y x G y
34 8 33 eqtrd φ H K func F G = H F x B , y B F x K F y x G y