Metamath Proof Explorer


Theorem cofuval2

Description: Value of the composition of two functors. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses cofuval2.b B=BaseC
cofuval2.f φFCFuncDG
cofuval2.x φHDFuncEK
Assertion cofuval2 φHKfuncFG=HFxB,yBFxKFyxGy

Proof

Step Hyp Ref Expression
1 cofuval2.b B=BaseC
2 cofuval2.f φFCFuncDG
3 cofuval2.x φHDFuncEK
4 df-br FCFuncDGFGCFuncD
5 2 4 sylib φFGCFuncD
6 df-br HDFuncEKHKDFuncE
7 3 6 sylib φHKDFuncE
8 1 5 7 cofuval φHKfuncFG=1stHK1stFGxB,yB1stFGx2ndHK1stFGyx2ndFGy
9 relfunc RelDFuncE
10 brrelex12 RelDFuncEHDFuncEKHVKV
11 9 3 10 sylancr φHVKV
12 op1stg HVKV1stHK=H
13 11 12 syl φ1stHK=H
14 relfunc RelCFuncD
15 brrelex12 RelCFuncDFCFuncDGFVGV
16 14 2 15 sylancr φFVGV
17 op1stg FVGV1stFG=F
18 16 17 syl φ1stFG=F
19 13 18 coeq12d φ1stHK1stFG=HF
20 op2ndg HVKV2ndHK=K
21 11 20 syl φ2ndHK=K
22 21 3ad2ant1 φxByB2ndHK=K
23 18 3ad2ant1 φxByB1stFG=F
24 23 fveq1d φxByB1stFGx=Fx
25 23 fveq1d φxByB1stFGy=Fy
26 22 24 25 oveq123d φxByB1stFGx2ndHK1stFGy=FxKFy
27 op2ndg FVGV2ndFG=G
28 16 27 syl φ2ndFG=G
29 28 3ad2ant1 φxByB2ndFG=G
30 29 oveqd φxByBx2ndFGy=xGy
31 26 30 coeq12d φxByB1stFGx2ndHK1stFGyx2ndFGy=FxKFyxGy
32 31 mpoeq3dva φxB,yB1stFGx2ndHK1stFGyx2ndFGy=xB,yBFxKFyxGy
33 19 32 opeq12d φ1stHK1stFGxB,yB1stFGx2ndHK1stFGyx2ndFGy=HFxB,yBFxKFyxGy
34 8 33 eqtrd φHKfuncFG=HFxB,yBFxKFyxGy