Metamath Proof Explorer


Theorem coiniss

Description: Coinitiality for a subset. (Contributed by Scott Fenton, 13-Mar-2025)

Ref Expression
Hypotheses cofss.1 φANo
cofss.2 φBA
Assertion coiniss φxByAysx

Proof

Step Hyp Ref Expression
1 cofss.1 φANo
2 cofss.2 φBA
3 2 sselda φzBzA
4 2 1 sstrd φBNo
5 4 sselda φzBzNo
6 slerflex zNozsz
7 5 6 syl φzBzsz
8 breq1 y=zyszzsz
9 8 rspcev zAzszyAysz
10 3 7 9 syl2anc φzByAysz
11 10 ralrimiva φzByAysz
12 breq2 x=zysxysz
13 12 rexbidv x=zyAysxyAysz
14 13 cbvralvw xByAysxzByAysz
15 11 14 sylibr φxByAysx