Description: A conjugated subgroup is equinumerous to the original subgroup. (Contributed by Mario Carneiro, 18-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | conjghm.x | |
|
conjghm.p | |
||
conjghm.m | |
||
conjsubg.f | |
||
Assertion | conjsubgen | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | conjghm.x | |
|
2 | conjghm.p | |
|
3 | conjghm.m | |
|
4 | conjsubg.f | |
|
5 | subgrcl | |
|
6 | eqid | |
|
7 | 1 2 3 6 | conjghm | |
8 | 5 7 | sylan | |
9 | f1of1 | |
|
10 | 8 9 | simpl2im | |
11 | 1 | subgss | |
12 | 11 | adantr | |
13 | f1ssres | |
|
14 | 10 12 13 | syl2anc | |
15 | 12 | resmptd | |
16 | 15 4 | eqtr4di | |
17 | f1eq1 | |
|
18 | 16 17 | syl | |
19 | 14 18 | mpbid | |
20 | f1f1orn | |
|
21 | 19 20 | syl | |
22 | f1oeng | |
|
23 | 21 22 | syldan | |