Metamath Proof Explorer


Theorem conjsubgen

Description: A conjugated subgroup is equinumerous to the original subgroup. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypotheses conjghm.x X=BaseG
conjghm.p +˙=+G
conjghm.m -˙=-G
conjsubg.f F=xSA+˙x-˙A
Assertion conjsubgen SSubGrpGAXSranF

Proof

Step Hyp Ref Expression
1 conjghm.x X=BaseG
2 conjghm.p +˙=+G
3 conjghm.m -˙=-G
4 conjsubg.f F=xSA+˙x-˙A
5 subgrcl SSubGrpGGGrp
6 eqid xXA+˙x-˙A=xXA+˙x-˙A
7 1 2 3 6 conjghm GGrpAXxXA+˙x-˙AGGrpHomGxXA+˙x-˙A:X1-1 ontoX
8 5 7 sylan SSubGrpGAXxXA+˙x-˙AGGrpHomGxXA+˙x-˙A:X1-1 ontoX
9 f1of1 xXA+˙x-˙A:X1-1 ontoXxXA+˙x-˙A:X1-1X
10 8 9 simpl2im SSubGrpGAXxXA+˙x-˙A:X1-1X
11 1 subgss SSubGrpGSX
12 11 adantr SSubGrpGAXSX
13 f1ssres xXA+˙x-˙A:X1-1XSXxXA+˙x-˙AS:S1-1X
14 10 12 13 syl2anc SSubGrpGAXxXA+˙x-˙AS:S1-1X
15 12 resmptd SSubGrpGAXxXA+˙x-˙AS=xSA+˙x-˙A
16 15 4 eqtr4di SSubGrpGAXxXA+˙x-˙AS=F
17 f1eq1 xXA+˙x-˙AS=FxXA+˙x-˙AS:S1-1XF:S1-1X
18 16 17 syl SSubGrpGAXxXA+˙x-˙AS:S1-1XF:S1-1X
19 14 18 mpbid SSubGrpGAXF:S1-1X
20 f1f1orn F:S1-1XF:S1-1 ontoranF
21 19 20 syl SSubGrpGAXF:S1-1 ontoranF
22 f1oeng SSubGrpGF:S1-1 ontoranFSranF
23 21 22 syldan SSubGrpGAXSranF