| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isconn.1 |  | 
						
							| 2 |  | connclo.1 |  | 
						
							| 3 |  | connclo.2 |  | 
						
							| 4 |  | connclo.3 |  | 
						
							| 5 |  | conndisj.4 |  | 
						
							| 6 |  | conndisj.5 |  | 
						
							| 7 |  | conndisj.6 |  | 
						
							| 8 |  | elssuni |  | 
						
							| 9 | 3 8 | syl |  | 
						
							| 10 | 9 1 | sseqtrrdi |  | 
						
							| 11 |  | uneqdifeq |  | 
						
							| 12 | 10 7 11 | syl2anc |  | 
						
							| 13 |  | simpr |  | 
						
							| 14 | 13 | difeq2d |  | 
						
							| 15 |  | dfss4 |  | 
						
							| 16 | 10 15 | sylib |  | 
						
							| 17 | 16 | adantr |  | 
						
							| 18 | 2 | adantr |  | 
						
							| 19 | 5 | adantr |  | 
						
							| 20 | 6 | adantr |  | 
						
							| 21 | 1 | isconn |  | 
						
							| 22 | 21 | simplbi |  | 
						
							| 23 | 2 22 | syl |  | 
						
							| 24 | 1 | opncld |  | 
						
							| 25 | 23 3 24 | syl2anc |  | 
						
							| 26 | 25 | adantr |  | 
						
							| 27 | 13 26 | eqeltrrd |  | 
						
							| 28 | 1 18 19 20 27 | connclo |  | 
						
							| 29 | 28 | difeq2d |  | 
						
							| 30 |  | difid |  | 
						
							| 31 | 29 30 | eqtrdi |  | 
						
							| 32 | 14 17 31 | 3eqtr3d |  | 
						
							| 33 | 32 | ex |  | 
						
							| 34 | 12 33 | sylbid |  | 
						
							| 35 | 34 | necon3d |  | 
						
							| 36 | 4 35 | mpd |  |