Metamath Proof Explorer


Theorem conngrv2edg

Description: A vertex in a connected graph with more than one vertex is incident with at least one edge. Formerly part of proof for vdgn0frgrv2 . (Contributed by Alexander van der Vekens, 9-Dec-2017) (Revised by AV, 4-Apr-2021)

Ref Expression
Hypotheses conngrv2edg.v V=VtxG
conngrv2edg.i I=iEdgG
Assertion conngrv2edg GConnGraphNV1<VeranINe

Proof

Step Hyp Ref Expression
1 conngrv2edg.v V=VtxG
2 conngrv2edg.i I=iEdgG
3 1 fvexi VV
4 simp3 GConnGraphNV1<V1<V
5 simp2 GConnGraphNV1<VNV
6 hashgt12el2 VV1<VNVvVNv
7 3 4 5 6 mp3an2i GConnGraphNV1<VvVNv
8 1 isconngr GConnGraphGConnGraphaVbVfpfaPathsOnGbp
9 oveq1 a=NaPathsOnGb=NPathsOnGb
10 9 breqd a=NfaPathsOnGbpfNPathsOnGbp
11 10 2exbidv a=NfpfaPathsOnGbpfpfNPathsOnGbp
12 oveq2 b=vNPathsOnGb=NPathsOnGv
13 12 breqd b=vfNPathsOnGbpfNPathsOnGvp
14 13 2exbidv b=vfpfNPathsOnGbpfpfNPathsOnGvp
15 11 14 rspc2v NVvVaVbVfpfaPathsOnGbpfpfNPathsOnGvp
16 15 ad2ant2r NV1<VvVNvaVbVfpfaPathsOnGbpfpfNPathsOnGvp
17 pthontrlon fNPathsOnGvpfNTrailsOnGvp
18 trlsonwlkon fNTrailsOnGvpfNWalksOnGvp
19 simpl fNWalksOnGvpNV1<VvVNvfNWalksOnGvp
20 simprr NV1<VvVNvNv
21 wlkon2n0 fNWalksOnGvpNvf0
22 20 21 sylan2 fNWalksOnGvpNV1<VvVNvf0
23 19 22 jca fNWalksOnGvpNV1<VvVNvfNWalksOnGvpf0
24 23 ex fNWalksOnGvpNV1<VvVNvfNWalksOnGvpf0
25 17 18 24 3syl fNPathsOnGvpNV1<VvVNvfNWalksOnGvpf0
26 2 wlkonl1iedg fNWalksOnGvpf0eranINe
27 25 26 syl6com NV1<VvVNvfNPathsOnGvperanINe
28 27 exlimdvv NV1<VvVNvfpfNPathsOnGvperanINe
29 16 28 syldc aVbVfpfaPathsOnGbpNV1<VvVNveranINe
30 8 29 syl6bi GConnGraphGConnGraphNV1<VvVNveranINe
31 30 pm2.43i GConnGraphNV1<VvVNveranINe
32 31 expd GConnGraphNV1<VvVNveranINe
33 32 3impib GConnGraphNV1<VvVNveranINe
34 33 expd GConnGraphNV1<VvVNveranINe
35 34 rexlimdv GConnGraphNV1<VvVNveranINe
36 7 35 mpd GConnGraphNV1<VeranINe