| Step | Hyp | Ref | Expression | 
						
							| 1 |  | constlimc.f |  | 
						
							| 2 |  | constlimc.a |  | 
						
							| 3 |  | constlimc.b |  | 
						
							| 4 |  | constlimc.c |  | 
						
							| 5 |  | 1rp |  | 
						
							| 6 | 5 | a1i |  | 
						
							| 7 |  | simpr |  | 
						
							| 8 |  | vex |  | 
						
							| 9 |  | nfcv |  | 
						
							| 10 |  | csbtt |  | 
						
							| 11 | 8 9 10 | mp2an |  | 
						
							| 12 | 11 3 | eqeltrid |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 | 1 | fvmpts |  | 
						
							| 15 | 7 13 14 | syl2anc |  | 
						
							| 16 | 15 | oveq1d |  | 
						
							| 17 | 11 | oveq1i |  | 
						
							| 18 | 16 17 | eqtrdi |  | 
						
							| 19 | 18 | fveq2d |  | 
						
							| 20 | 3 | subidd |  | 
						
							| 21 | 20 | fveq2d |  | 
						
							| 22 | 21 | adantr |  | 
						
							| 23 |  | abs0 |  | 
						
							| 24 | 23 | a1i |  | 
						
							| 25 | 19 22 24 | 3eqtrd |  | 
						
							| 26 | 25 | adantlr |  | 
						
							| 27 |  | rpgt0 |  | 
						
							| 28 | 27 | ad2antlr |  | 
						
							| 29 | 26 28 | eqbrtrd |  | 
						
							| 30 | 29 | a1d |  | 
						
							| 31 | 30 | ralrimiva |  | 
						
							| 32 |  | brimralrspcev |  | 
						
							| 33 | 6 31 32 | syl2anc |  | 
						
							| 34 | 33 | ralrimiva |  | 
						
							| 35 | 3 | adantr |  | 
						
							| 36 | 35 1 | fmptd |  | 
						
							| 37 | 36 2 4 | ellimc3 |  | 
						
							| 38 | 3 34 37 | mpbir2and |  |