Step |
Hyp |
Ref |
Expression |
1 |
|
constr0.1 |
|
2 |
|
constrsscn.1 |
|
3 |
|
fveq2 |
|
4 |
3
|
sseq2d |
|
5 |
|
fveq2 |
|
6 |
5
|
sseq2d |
|
7 |
|
fveq2 |
|
8 |
7
|
sseq2d |
|
9 |
|
fveq2 |
|
10 |
9
|
sseq2d |
|
11 |
1
|
constr0 |
|
12 |
11
|
eqimss2i |
|
13 |
|
simpr |
|
14 |
|
simpl |
|
15 |
|
c0ex |
|
16 |
15
|
prid1 |
|
17 |
16
|
a1i |
|
18 |
13 17
|
sseldd |
|
19 |
1 14 18
|
constrsslem |
|
20 |
13 19
|
sstrd |
|
21 |
20
|
ex |
|
22 |
|
0ellim |
|
23 |
|
fveq2 |
|
24 |
23 11
|
eqtrdi |
|
25 |
24
|
ssiun2s |
|
26 |
22 25
|
syl |
|
27 |
|
vex |
|
28 |
27
|
a1i |
|
29 |
|
id |
|
30 |
1 28 29
|
constrlim |
|
31 |
26 30
|
sseqtrrd |
|
32 |
31
|
a1d |
|
33 |
4 6 8 10 12 21 32
|
tfinds |
|
34 |
2 33
|
syl |
|