| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constr0.1 |
|
| 2 |
|
constrsscn.1 |
|
| 3 |
|
fveq2 |
|
| 4 |
3
|
sseq2d |
|
| 5 |
|
fveq2 |
|
| 6 |
5
|
sseq2d |
|
| 7 |
|
fveq2 |
|
| 8 |
7
|
sseq2d |
|
| 9 |
|
fveq2 |
|
| 10 |
9
|
sseq2d |
|
| 11 |
1
|
constr0 |
|
| 12 |
11
|
eqimss2i |
|
| 13 |
|
simpr |
|
| 14 |
|
simpl |
|
| 15 |
|
c0ex |
|
| 16 |
15
|
prid1 |
|
| 17 |
16
|
a1i |
|
| 18 |
13 17
|
sseldd |
|
| 19 |
1 14 18
|
constrsslem |
|
| 20 |
13 19
|
sstrd |
|
| 21 |
20
|
ex |
|
| 22 |
|
0ellim |
|
| 23 |
|
fveq2 |
|
| 24 |
23 11
|
eqtrdi |
|
| 25 |
24
|
ssiun2s |
|
| 26 |
22 25
|
syl |
|
| 27 |
|
vex |
|
| 28 |
27
|
a1i |
|
| 29 |
|
id |
|
| 30 |
1 28 29
|
constrlim |
|
| 31 |
26 30
|
sseqtrrd |
|
| 32 |
31
|
a1d |
|
| 33 |
4 6 8 10 12 21 32
|
tfinds |
|
| 34 |
2 33
|
syl |
|