Metamath Proof Explorer


Theorem constr01

Description: 0 and 1 are in all steps of the construction of constructible points. (Contributed by Thierry Arnoux, 25-Jun-2025)

Ref Expression
Hypotheses constr0.1 C = rec s V x | a s b s c s d s t r x = a + t b a x = c + r d c b a d c 0 a s b s c s e s f s t x = a + t b a x c = e f a s b s c s d s e s f s a d x a = b c x d = e f 0 1
constrsscn.1 φ N On
Assertion constr01 φ 0 1 C N

Proof

Step Hyp Ref Expression
1 constr0.1 C = rec s V x | a s b s c s d s t r x = a + t b a x = c + r d c b a d c 0 a s b s c s e s f s t x = a + t b a x c = e f a s b s c s d s e s f s a d x a = b c x d = e f 0 1
2 constrsscn.1 φ N On
3 fveq2 m = C m = C
4 3 sseq2d m = 0 1 C m 0 1 C
5 fveq2 m = n C m = C n
6 5 sseq2d m = n 0 1 C m 0 1 C n
7 fveq2 m = suc n C m = C suc n
8 7 sseq2d m = suc n 0 1 C m 0 1 C suc n
9 fveq2 m = N C m = C N
10 9 sseq2d m = N 0 1 C m 0 1 C N
11 1 constr0 C = 0 1
12 11 eqimss2i 0 1 C
13 simpr n On 0 1 C n 0 1 C n
14 simpl n On 0 1 C n n On
15 c0ex 0 V
16 15 prid1 0 0 1
17 16 a1i n On 0 1 C n 0 0 1
18 13 17 sseldd n On 0 1 C n 0 C n
19 1 14 18 constrsslem n On 0 1 C n C n C suc n
20 13 19 sstrd n On 0 1 C n 0 1 C suc n
21 20 ex n On 0 1 C n 0 1 C suc n
22 0ellim Lim m m
23 fveq2 o = C o = C
24 23 11 eqtrdi o = C o = 0 1
25 24 ssiun2s m 0 1 o m C o
26 22 25 syl Lim m 0 1 o m C o
27 vex m V
28 27 a1i Lim m m V
29 id Lim m Lim m
30 1 28 29 constrlim Lim m C m = o m C o
31 26 30 sseqtrrd Lim m 0 1 C m
32 31 a1d Lim m n m 0 1 C n 0 1 C m
33 4 6 8 10 12 21 32 tfinds N On 0 1 C N
34 2 33 syl φ 0 1 C N