Metamath Proof Explorer


Theorem cos11

Description: Cosine is one-to-one over the closed interval from 0 to _pi . (Contributed by Paul Chapman, 16-Mar-2008) (Proof shortened by Mario Carneiro, 10-May-2014)

Ref Expression
Assertion cos11 A0πB0πA=BcosA=cosB

Proof

Step Hyp Ref Expression
1 ancom ¬A<B¬B<A¬B<A¬A<B
2 cosord B0πA0πB<AcosA<cosB
3 2 ancoms A0πB0πB<AcosA<cosB
4 3 notbid A0πB0π¬B<A¬cosA<cosB
5 cosord A0πB0πA<BcosB<cosA
6 5 notbid A0πB0π¬A<B¬cosB<cosA
7 4 6 anbi12d A0πB0π¬B<A¬A<B¬cosA<cosB¬cosB<cosA
8 1 7 bitrid A0πB0π¬A<B¬B<A¬cosA<cosB¬cosB<cosA
9 0re 0
10 pire π
11 9 10 elicc2i A0πA0AAπ
12 11 simp1bi A0πA
13 9 10 elicc2i B0πB0BBπ
14 13 simp1bi B0πB
15 lttri3 ABA=B¬A<B¬B<A
16 12 14 15 syl2an A0πB0πA=B¬A<B¬B<A
17 recoscl AcosA
18 recoscl BcosB
19 lttri3 cosAcosBcosA=cosB¬cosA<cosB¬cosB<cosA
20 17 18 19 syl2an ABcosA=cosB¬cosA<cosB¬cosB<cosA
21 12 14 20 syl2an A0πB0πcosA=cosB¬cosA<cosB¬cosB<cosA
22 8 16 21 3bitr4d A0πB0πA=BcosA=cosB