Metamath Proof Explorer


Theorem cphcjcl

Description: The scalar field of a subcomplex pre-Hilbert space is closed under conjugation. (Contributed by Mario Carneiro, 11-Oct-2015)

Ref Expression
Hypotheses cphsca.f F=ScalarW
cphsca.k K=BaseF
Assertion cphcjcl WCPreHilAKAK

Proof

Step Hyp Ref Expression
1 cphsca.f F=ScalarW
2 cphsca.k K=BaseF
3 1 2 cphsca WCPreHilF=fld𝑠K
4 3 fveq2d WCPreHil*F=*fld𝑠K
5 2 fvexi KV
6 eqid fld𝑠K=fld𝑠K
7 cnfldcj *=*fld
8 6 7 ressstarv KV*=*fld𝑠K
9 5 8 ax-mp *=*fld𝑠K
10 4 9 eqtr4di WCPreHil*F=*
11 10 adantr WCPreHilAK*F=*
12 11 fveq1d WCPreHilAKA*F=A
13 cphphl WCPreHilWPreHil
14 1 phlsrng WPreHilF*-Ring
15 13 14 syl WCPreHilF*-Ring
16 eqid *F=*F
17 16 2 srngcl F*-RingAKA*FK
18 15 17 sylan WCPreHilAKA*FK
19 12 18 eqeltrrd WCPreHilAKAK