Metamath Proof Explorer


Theorem cusconngr

Description: A complete hypergraph is connected. (Contributed by Alexander van der Vekens, 4-Dec-2017) (Revised by AV, 15-Feb-2021)

Ref Expression
Assertion cusconngr GUHGraphGComplGraphGConnGraph

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 eqid EdgG=EdgG
3 1 2 iscplgredg GUHGraphGComplGraphkVtxGnVtxGkeEdgGkne
4 simp-4l GUHGraphkVtxGnVtxGkeEdgGkneGUHGraph
5 simpr GUHGraphkVtxGkVtxG
6 eldifi nVtxGknVtxG
7 5 6 anim12i GUHGraphkVtxGnVtxGkkVtxGnVtxG
8 7 adantr GUHGraphkVtxGnVtxGkeEdgGkVtxGnVtxG
9 8 adantr GUHGraphkVtxGnVtxGkeEdgGknekVtxGnVtxG
10 id eEdgGeEdgG
11 sseq2 c=eknckne
12 11 adantl eEdgGc=eknckne
13 10 12 rspcedv eEdgGknecEdgGknc
14 13 adantl GUHGraphkVtxGnVtxGkeEdgGknecEdgGknc
15 14 imp GUHGraphkVtxGnVtxGkeEdgGknecEdgGknc
16 1 2 1pthon2v GUHGraphkVtxGnVtxGcEdgGkncfpfkPathsOnGnp
17 4 9 15 16 syl3anc GUHGraphkVtxGnVtxGkeEdgGknefpfkPathsOnGnp
18 17 rexlimdva2 GUHGraphkVtxGnVtxGkeEdgGknefpfkPathsOnGnp
19 18 ralimdva GUHGraphkVtxGnVtxGkeEdgGknenVtxGkfpfkPathsOnGnp
20 19 ralimdva GUHGraphkVtxGnVtxGkeEdgGknekVtxGnVtxGkfpfkPathsOnGnp
21 3 20 sylbid GUHGraphGComplGraphkVtxGnVtxGkfpfkPathsOnGnp
22 21 imp GUHGraphGComplGraphkVtxGnVtxGkfpfkPathsOnGnp
23 1 isconngr1 GUHGraphGConnGraphkVtxGnVtxGkfpfkPathsOnGnp
24 23 adantr GUHGraphGComplGraphGConnGraphkVtxGnVtxGkfpfkPathsOnGnp
25 22 24 mpbird GUHGraphGComplGraphGConnGraph