Description: A complete hypergraph is connected. (Contributed by Alexander van der Vekens, 4-Dec-2017) (Revised by AV, 15-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | cusconngr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | eqid | |
|
3 | 1 2 | iscplgredg | |
4 | simp-4l | |
|
5 | simpr | |
|
6 | eldifi | |
|
7 | 5 6 | anim12i | |
8 | 7 | adantr | |
9 | 8 | adantr | |
10 | id | |
|
11 | sseq2 | |
|
12 | 11 | adantl | |
13 | 10 12 | rspcedv | |
14 | 13 | adantl | |
15 | 14 | imp | |
16 | 1 2 | 1pthon2v | |
17 | 4 9 15 16 | syl3anc | |
18 | 17 | rexlimdva2 | |
19 | 18 | ralimdva | |
20 | 19 | ralimdva | |
21 | 3 20 | sylbid | |
22 | 21 | imp | |
23 | 1 | isconngr1 | |
24 | 23 | adantr | |
25 | 22 24 | mpbird | |