Metamath Proof Explorer


Theorem cuspcvg

Description: In a complete uniform space, any Cauchy filter C has a limit. (Contributed by Thierry Arnoux, 3-Dec-2017)

Ref Expression
Hypotheses cuspcvg.1 B=BaseW
cuspcvg.2 J=TopOpenW
Assertion cuspcvg WCUnifSpCCauFilUUnifStWCFilBJfLimC

Proof

Step Hyp Ref Expression
1 cuspcvg.1 B=BaseW
2 cuspcvg.2 J=TopOpenW
3 eleq1 c=CcCauFilUUnifStWCCauFilUUnifStW
4 2 eqcomi TopOpenW=J
5 4 a1i c=CTopOpenW=J
6 id c=Cc=C
7 5 6 oveq12d c=CTopOpenWfLimc=JfLimC
8 7 neeq1d c=CTopOpenWfLimcJfLimC
9 3 8 imbi12d c=CcCauFilUUnifStWTopOpenWfLimcCCauFilUUnifStWJfLimC
10 iscusp WCUnifSpWUnifSpcFilBaseWcCauFilUUnifStWTopOpenWfLimc
11 10 simprbi WCUnifSpcFilBaseWcCauFilUUnifStWTopOpenWfLimc
12 11 adantr WCUnifSpCFilBcFilBaseWcCauFilUUnifStWTopOpenWfLimc
13 simpr WCUnifSpCFilBCFilB
14 1 fveq2i FilB=FilBaseW
15 13 14 eleqtrdi WCUnifSpCFilBCFilBaseW
16 9 12 15 rspcdva WCUnifSpCFilBCCauFilUUnifStWJfLimC
17 16 3impia WCUnifSpCFilBCCauFilUUnifStWJfLimC
18 17 3com23 WCUnifSpCCauFilUUnifStWCFilBJfLimC