Metamath Proof Explorer


Theorem cvcon3

Description: Contraposition law for the covers relation. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvcon3 ACBCABBA

Proof

Step Hyp Ref Expression
1 chpsscon3 ACBCABBA
2 chpsscon3 ACxCAxxA
3 2 adantlr ACBCxCAxxA
4 chpsscon3 xCBCxBBx
5 4 ancoms BCxCxBBx
6 5 adantll ACBCxCxBBx
7 3 6 anbi12d ACBCxCAxxBxABx
8 choccl xCxC
9 psseq2 y=xByBx
10 psseq1 y=xyAxA
11 9 10 anbi12d y=xByyABxxA
12 11 rspcev xCBxxAyCByyA
13 8 12 sylan xCBxxAyCByyA
14 13 ex xCBxxAyCByyA
15 14 ancomsd xCxABxyCByyA
16 15 adantl ACBCxCxABxyCByyA
17 7 16 sylbid ACBCxCAxxByCByyA
18 17 rexlimdva ACBCxCAxxByCByyA
19 chpsscon1 BCyCByyB
20 19 adantll ACBCyCByyB
21 chpsscon2 yCACyAAy
22 21 ancoms ACyCyAAy
23 22 adantlr ACBCyCyAAy
24 20 23 anbi12d ACBCyCByyAyBAy
25 choccl yCyC
26 psseq2 x=yAxAy
27 psseq1 x=yxByB
28 26 27 anbi12d x=yAxxBAyyB
29 28 rspcev yCAyyBxCAxxB
30 25 29 sylan yCAyyBxCAxxB
31 30 ex yCAyyBxCAxxB
32 31 ancomsd yCyBAyxCAxxB
33 32 adantl ACBCyCyBAyxCAxxB
34 24 33 sylbid ACBCyCByyAxCAxxB
35 34 rexlimdva ACBCyCByyAxCAxxB
36 18 35 impbid ACBCxCAxxByCByyA
37 36 notbid ACBC¬xCAxxB¬yCByyA
38 1 37 anbi12d ACBCAB¬xCAxxBBA¬yCByyA
39 cvbr ACBCABAB¬xCAxxB
40 choccl BCBC
41 choccl ACAC
42 cvbr BCACBABA¬yCByyA
43 40 41 42 syl2anr ACBCBABA¬yCByyA
44 38 39 43 3bitr4d ACBCABBA