Metamath Proof Explorer


Theorem cvlexchb1

Description: An atomic covering lattice has the exchange property. (Contributed by NM, 16-Nov-2011)

Ref Expression
Hypotheses cvlexch.b B=BaseK
cvlexch.l ˙=K
cvlexch.j ˙=joinK
cvlexch.a A=AtomsK
Assertion cvlexchb1 KCvLatPAQAXB¬P˙XP˙X˙QX˙P=X˙Q

Proof

Step Hyp Ref Expression
1 cvlexch.b B=BaseK
2 cvlexch.l ˙=K
3 cvlexch.j ˙=joinK
4 cvlexch.a A=AtomsK
5 cvllat KCvLatKLat
6 5 adantr KCvLatPAQAXBKLat
7 simpr3 KCvLatPAQAXBXB
8 simpr2 KCvLatPAQAXBQA
9 1 4 atbase QAQB
10 8 9 syl KCvLatPAQAXBQB
11 1 2 3 latlej1 KLatXBQBX˙X˙Q
12 6 7 10 11 syl3anc KCvLatPAQAXBX˙X˙Q
13 12 3adant3 KCvLatPAQAXB¬P˙XX˙X˙Q
14 13 adantr KCvLatPAQAXB¬P˙XP˙X˙QX˙X˙Q
15 simpr KCvLatPAQAXB¬P˙XP˙X˙QP˙X˙Q
16 simpr1 KCvLatPAQAXBPA
17 1 4 atbase PAPB
18 16 17 syl KCvLatPAQAXBPB
19 1 3 latjcl KLatXBQBX˙QB
20 6 7 10 19 syl3anc KCvLatPAQAXBX˙QB
21 1 2 3 latjle12 KLatXBPBX˙QBX˙X˙QP˙X˙QX˙P˙X˙Q
22 6 7 18 20 21 syl13anc KCvLatPAQAXBX˙X˙QP˙X˙QX˙P˙X˙Q
23 22 3adant3 KCvLatPAQAXB¬P˙XX˙X˙QP˙X˙QX˙P˙X˙Q
24 23 adantr KCvLatPAQAXB¬P˙XP˙X˙QX˙X˙QP˙X˙QX˙P˙X˙Q
25 14 15 24 mpbi2and KCvLatPAQAXB¬P˙XP˙X˙QX˙P˙X˙Q
26 1 2 3 latlej1 KLatXBPBX˙X˙P
27 6 7 18 26 syl3anc KCvLatPAQAXBX˙X˙P
28 27 3adant3 KCvLatPAQAXB¬P˙XX˙X˙P
29 28 adantr KCvLatPAQAXB¬P˙XP˙X˙QX˙X˙P
30 1 2 3 4 cvlexch1 KCvLatPAQAXB¬P˙XP˙X˙QQ˙X˙P
31 30 imp KCvLatPAQAXB¬P˙XP˙X˙QQ˙X˙P
32 1 3 latjcl KLatXBPBX˙PB
33 6 7 18 32 syl3anc KCvLatPAQAXBX˙PB
34 1 2 3 latjle12 KLatXBQBX˙PBX˙X˙PQ˙X˙PX˙Q˙X˙P
35 6 7 10 33 34 syl13anc KCvLatPAQAXBX˙X˙PQ˙X˙PX˙Q˙X˙P
36 35 3adant3 KCvLatPAQAXB¬P˙XX˙X˙PQ˙X˙PX˙Q˙X˙P
37 36 adantr KCvLatPAQAXB¬P˙XP˙X˙QX˙X˙PQ˙X˙PX˙Q˙X˙P
38 29 31 37 mpbi2and KCvLatPAQAXB¬P˙XP˙X˙QX˙Q˙X˙P
39 1 2 latasymb KLatX˙PBX˙QBX˙P˙X˙QX˙Q˙X˙PX˙P=X˙Q
40 6 33 20 39 syl3anc KCvLatPAQAXBX˙P˙X˙QX˙Q˙X˙PX˙P=X˙Q
41 40 3adant3 KCvLatPAQAXB¬P˙XX˙P˙X˙QX˙Q˙X˙PX˙P=X˙Q
42 41 adantr KCvLatPAQAXB¬P˙XP˙X˙QX˙P˙X˙QX˙Q˙X˙PX˙P=X˙Q
43 25 38 42 mpbi2and KCvLatPAQAXB¬P˙XP˙X˙QX˙P=X˙Q
44 43 ex KCvLatPAQAXB¬P˙XP˙X˙QX˙P=X˙Q
45 1 2 3 latlej2 KLatXBPBP˙X˙P
46 6 7 18 45 syl3anc KCvLatPAQAXBP˙X˙P
47 breq2 X˙P=X˙QP˙X˙PP˙X˙Q
48 46 47 syl5ibcom KCvLatPAQAXBX˙P=X˙QP˙X˙Q
49 48 3adant3 KCvLatPAQAXB¬P˙XX˙P=X˙QP˙X˙Q
50 44 49 impbid KCvLatPAQAXB¬P˙XP˙X˙QX˙P=X˙Q