| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvrcon3b.b |
|
| 2 |
|
cvrcon3b.o |
|
| 3 |
|
cvrcon3b.c |
|
| 4 |
|
eqid |
|
| 5 |
1 4 2
|
opltcon3b |
|
| 6 |
|
simpl1 |
|
| 7 |
|
simpl2 |
|
| 8 |
|
simpr |
|
| 9 |
1 4 2
|
opltcon3b |
|
| 10 |
6 7 8 9
|
syl3anc |
|
| 11 |
|
simpl3 |
|
| 12 |
1 4 2
|
opltcon3b |
|
| 13 |
6 8 11 12
|
syl3anc |
|
| 14 |
10 13
|
anbi12d |
|
| 15 |
1 2
|
opoccl |
|
| 16 |
15
|
3ad2antl1 |
|
| 17 |
|
breq2 |
|
| 18 |
|
breq1 |
|
| 19 |
17 18
|
anbi12d |
|
| 20 |
19
|
rspcev |
|
| 21 |
20
|
ex |
|
| 22 |
16 21
|
syl |
|
| 23 |
22
|
ancomsd |
|
| 24 |
14 23
|
sylbid |
|
| 25 |
24
|
rexlimdva |
|
| 26 |
|
simpl1 |
|
| 27 |
|
simpl3 |
|
| 28 |
|
simpr |
|
| 29 |
1 4 2
|
opltcon1b |
|
| 30 |
26 27 28 29
|
syl3anc |
|
| 31 |
|
simpl2 |
|
| 32 |
1 4 2
|
opltcon2b |
|
| 33 |
26 28 31 32
|
syl3anc |
|
| 34 |
30 33
|
anbi12d |
|
| 35 |
1 2
|
opoccl |
|
| 36 |
35
|
3ad2antl1 |
|
| 37 |
|
breq2 |
|
| 38 |
|
breq1 |
|
| 39 |
37 38
|
anbi12d |
|
| 40 |
39
|
rspcev |
|
| 41 |
40
|
ex |
|
| 42 |
36 41
|
syl |
|
| 43 |
42
|
ancomsd |
|
| 44 |
34 43
|
sylbid |
|
| 45 |
44
|
rexlimdva |
|
| 46 |
25 45
|
impbid |
|
| 47 |
46
|
notbid |
|
| 48 |
5 47
|
anbi12d |
|
| 49 |
1 4 3
|
cvrval |
|
| 50 |
|
simp1 |
|
| 51 |
1 2
|
opoccl |
|
| 52 |
51
|
3adant2 |
|
| 53 |
1 2
|
opoccl |
|
| 54 |
53
|
3adant3 |
|
| 55 |
1 4 3
|
cvrval |
|
| 56 |
50 52 54 55
|
syl3anc |
|
| 57 |
48 49 56
|
3bitr4d |
|