Metamath Proof Explorer


Theorem cvrcon3b

Description: Contraposition law for the covers relation. ( cvcon3 analog.) (Contributed by NM, 4-Nov-2011)

Ref Expression
Hypotheses cvrcon3b.b B=BaseK
cvrcon3b.o ˙=ocK
cvrcon3b.c C=K
Assertion cvrcon3b KOPXBYBXCY˙YC˙X

Proof

Step Hyp Ref Expression
1 cvrcon3b.b B=BaseK
2 cvrcon3b.o ˙=ocK
3 cvrcon3b.c C=K
4 eqid <K=<K
5 1 4 2 opltcon3b KOPXBYBX<KY˙Y<K˙X
6 simpl1 KOPXBYBxBKOP
7 simpl2 KOPXBYBxBXB
8 simpr KOPXBYBxBxB
9 1 4 2 opltcon3b KOPXBxBX<Kx˙x<K˙X
10 6 7 8 9 syl3anc KOPXBYBxBX<Kx˙x<K˙X
11 simpl3 KOPXBYBxBYB
12 1 4 2 opltcon3b KOPxBYBx<KY˙Y<K˙x
13 6 8 11 12 syl3anc KOPXBYBxBx<KY˙Y<K˙x
14 10 13 anbi12d KOPXBYBxBX<Kxx<KY˙x<K˙X˙Y<K˙x
15 1 2 opoccl KOPxB˙xB
16 15 3ad2antl1 KOPXBYBxB˙xB
17 breq2 y=˙x˙Y<Ky˙Y<K˙x
18 breq1 y=˙xy<K˙X˙x<K˙X
19 17 18 anbi12d y=˙x˙Y<Kyy<K˙X˙Y<K˙x˙x<K˙X
20 19 rspcev ˙xB˙Y<K˙x˙x<K˙XyB˙Y<Kyy<K˙X
21 20 ex ˙xB˙Y<K˙x˙x<K˙XyB˙Y<Kyy<K˙X
22 16 21 syl KOPXBYBxB˙Y<K˙x˙x<K˙XyB˙Y<Kyy<K˙X
23 22 ancomsd KOPXBYBxB˙x<K˙X˙Y<K˙xyB˙Y<Kyy<K˙X
24 14 23 sylbid KOPXBYBxBX<Kxx<KYyB˙Y<Kyy<K˙X
25 24 rexlimdva KOPXBYBxBX<Kxx<KYyB˙Y<Kyy<K˙X
26 simpl1 KOPXBYByBKOP
27 simpl3 KOPXBYByBYB
28 simpr KOPXBYByByB
29 1 4 2 opltcon1b KOPYByB˙Y<Ky˙y<KY
30 26 27 28 29 syl3anc KOPXBYByB˙Y<Ky˙y<KY
31 simpl2 KOPXBYByBXB
32 1 4 2 opltcon2b KOPyBXBy<K˙XX<K˙y
33 26 28 31 32 syl3anc KOPXBYByBy<K˙XX<K˙y
34 30 33 anbi12d KOPXBYByB˙Y<Kyy<K˙X˙y<KYX<K˙y
35 1 2 opoccl KOPyB˙yB
36 35 3ad2antl1 KOPXBYByB˙yB
37 breq2 x=˙yX<KxX<K˙y
38 breq1 x=˙yx<KY˙y<KY
39 37 38 anbi12d x=˙yX<Kxx<KYX<K˙y˙y<KY
40 39 rspcev ˙yBX<K˙y˙y<KYxBX<Kxx<KY
41 40 ex ˙yBX<K˙y˙y<KYxBX<Kxx<KY
42 36 41 syl KOPXBYByBX<K˙y˙y<KYxBX<Kxx<KY
43 42 ancomsd KOPXBYByB˙y<KYX<K˙yxBX<Kxx<KY
44 34 43 sylbid KOPXBYByB˙Y<Kyy<K˙XxBX<Kxx<KY
45 44 rexlimdva KOPXBYByB˙Y<Kyy<K˙XxBX<Kxx<KY
46 25 45 impbid KOPXBYBxBX<Kxx<KYyB˙Y<Kyy<K˙X
47 46 notbid KOPXBYB¬xBX<Kxx<KY¬yB˙Y<Kyy<K˙X
48 5 47 anbi12d KOPXBYBX<KY¬xBX<Kxx<KY˙Y<K˙X¬yB˙Y<Kyy<K˙X
49 1 4 3 cvrval KOPXBYBXCYX<KY¬xBX<Kxx<KY
50 simp1 KOPXBYBKOP
51 1 2 opoccl KOPYB˙YB
52 51 3adant2 KOPXBYB˙YB
53 1 2 opoccl KOPXB˙XB
54 53 3adant3 KOPXBYB˙XB
55 1 4 3 cvrval KOP˙YB˙XB˙YC˙X˙Y<K˙X¬yB˙Y<Kyy<K˙X
56 50 52 54 55 syl3anc KOPXBYB˙YC˙X˙Y<K˙X¬yB˙Y<Kyy<K˙X
57 48 49 56 3bitr4d KOPXBYBXCY˙YC˙X