Metamath Proof Explorer


Theorem cvrnbtwn

Description: There is no element between the two arguments of the covers relation. ( cvnbtwn analog.) (Contributed by NM, 18-Oct-2011)

Ref Expression
Hypotheses cvrfval.b B=BaseK
cvrfval.s <˙=<K
cvrfval.c C=K
Assertion cvrnbtwn KAXBYBZBXCY¬X<˙ZZ<˙Y

Proof

Step Hyp Ref Expression
1 cvrfval.b B=BaseK
2 cvrfval.s <˙=<K
3 cvrfval.c C=K
4 1 2 3 cvrval KAXBYBXCYX<˙Y¬zBX<˙zz<˙Y
5 4 3adant3r3 KAXBYBZBXCYX<˙Y¬zBX<˙zz<˙Y
6 ralnex zB¬X<˙zz<˙Y¬zBX<˙zz<˙Y
7 breq2 z=ZX<˙zX<˙Z
8 breq1 z=Zz<˙YZ<˙Y
9 7 8 anbi12d z=ZX<˙zz<˙YX<˙ZZ<˙Y
10 9 notbid z=Z¬X<˙zz<˙Y¬X<˙ZZ<˙Y
11 10 rspcv ZBzB¬X<˙zz<˙Y¬X<˙ZZ<˙Y
12 6 11 biimtrrid ZB¬zBX<˙zz<˙Y¬X<˙ZZ<˙Y
13 12 adantld ZBX<˙Y¬zBX<˙zz<˙Y¬X<˙ZZ<˙Y
14 13 3ad2ant3 XBYBZBX<˙Y¬zBX<˙zz<˙Y¬X<˙ZZ<˙Y
15 14 adantl KAXBYBZBX<˙Y¬zBX<˙zz<˙Y¬X<˙ZZ<˙Y
16 5 15 sylbid KAXBYBZBXCY¬X<˙ZZ<˙Y
17 16 3impia KAXBYBZBXCY¬X<˙ZZ<˙Y