Metamath Proof Explorer


Theorem cxple3

Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Assertion cxple3 A+A<1BCBCACAB

Proof

Step Hyp Ref Expression
1 cxplt3 A+A<1CBC<BAB<AC
2 1 ancom2s A+A<1BCC<BAB<AC
3 2 notbid A+A<1BC¬C<B¬AB<AC
4 lenlt BCBC¬C<B
5 4 adantl A+A<1BCBC¬C<B
6 rpcxpcl A+CAC+
7 6 ad2ant2rl A+A<1BCAC+
8 rpcxpcl A+BAB+
9 8 ad2ant2r A+A<1BCAB+
10 rpre AC+AC
11 rpre AB+AB
12 lenlt ACABACAB¬AB<AC
13 10 11 12 syl2an AC+AB+ACAB¬AB<AC
14 7 9 13 syl2anc A+A<1BCACAB¬AB<AC
15 3 5 14 3bitr4d A+A<1BCBCACAB