| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pthiswlk |
|
| 2 |
|
eqid |
|
| 3 |
2
|
upgrwlkvtxedg |
|
| 4 |
1 3
|
sylan2 |
|
| 5 |
4
|
adantr |
|
| 6 |
|
oveq2 |
|
| 7 |
|
fzo0to3tp |
|
| 8 |
6 7
|
eqtrdi |
|
| 9 |
8
|
adantl |
|
| 10 |
9
|
adantl |
|
| 11 |
10
|
raleqdv |
|
| 12 |
|
fveq2 |
|
| 13 |
12
|
eqeq2d |
|
| 14 |
|
c0ex |
|
| 15 |
|
1ex |
|
| 16 |
|
2ex |
|
| 17 |
|
fveq2 |
|
| 18 |
|
fv0p1e1 |
|
| 19 |
17 18
|
preq12d |
|
| 20 |
19
|
eleq1d |
|
| 21 |
|
fveq2 |
|
| 22 |
|
oveq1 |
|
| 23 |
|
1p1e2 |
|
| 24 |
22 23
|
eqtrdi |
|
| 25 |
24
|
fveq2d |
|
| 26 |
21 25
|
preq12d |
|
| 27 |
26
|
eleq1d |
|
| 28 |
|
fveq2 |
|
| 29 |
|
oveq1 |
|
| 30 |
|
2p1e3 |
|
| 31 |
29 30
|
eqtrdi |
|
| 32 |
31
|
fveq2d |
|
| 33 |
28 32
|
preq12d |
|
| 34 |
33
|
eleq1d |
|
| 35 |
14 15 16 20 27 34
|
raltp |
|
| 36 |
|
simpr1 |
|
| 37 |
|
preq2 |
|
| 38 |
|
prcom |
|
| 39 |
37 38
|
eqtr3di |
|
| 40 |
39
|
eleq1d |
|
| 41 |
40
|
biimpcd |
|
| 42 |
41
|
3ad2ant3 |
|
| 43 |
42
|
impcom |
|
| 44 |
|
simpr2 |
|
| 45 |
36 43 44
|
3jca |
|
| 46 |
45
|
ex |
|
| 47 |
35 46
|
biimtrid |
|
| 48 |
13 47
|
biimtrdi |
|
| 49 |
48
|
impcom |
|
| 50 |
49
|
adantl |
|
| 51 |
11 50
|
sylbid |
|
| 52 |
5 51
|
mpd |
|