Metamath Proof Explorer


Theorem cycl3grtrilem

Description: Lemma for cycl3grtri . (Contributed by AV, 5-Oct-2025)

Ref Expression
Assertion cycl3grtrilem G UPGraph F Paths G P P 0 = P F F = 3 P 0 P 1 Edg G P 0 P 2 Edg G P 1 P 2 Edg G

Proof

Step Hyp Ref Expression
1 pthiswlk F Paths G P F Walks G P
2 eqid Edg G = Edg G
3 2 upgrwlkvtxedg G UPGraph F Walks G P x 0 ..^ F P x P x + 1 Edg G
4 1 3 sylan2 G UPGraph F Paths G P x 0 ..^ F P x P x + 1 Edg G
5 4 adantr G UPGraph F Paths G P P 0 = P F F = 3 x 0 ..^ F P x P x + 1 Edg G
6 oveq2 F = 3 0 ..^ F = 0 ..^ 3
7 fzo0to3tp 0 ..^ 3 = 0 1 2
8 6 7 eqtrdi F = 3 0 ..^ F = 0 1 2
9 8 adantl P 0 = P F F = 3 0 ..^ F = 0 1 2
10 9 adantl G UPGraph F Paths G P P 0 = P F F = 3 0 ..^ F = 0 1 2
11 10 raleqdv G UPGraph F Paths G P P 0 = P F F = 3 x 0 ..^ F P x P x + 1 Edg G x 0 1 2 P x P x + 1 Edg G
12 fveq2 F = 3 P F = P 3
13 12 eqeq2d F = 3 P 0 = P F P 0 = P 3
14 c0ex 0 V
15 1ex 1 V
16 2ex 2 V
17 fveq2 x = 0 P x = P 0
18 fv0p1e1 x = 0 P x + 1 = P 1
19 17 18 preq12d x = 0 P x P x + 1 = P 0 P 1
20 19 eleq1d x = 0 P x P x + 1 Edg G P 0 P 1 Edg G
21 fveq2 x = 1 P x = P 1
22 oveq1 x = 1 x + 1 = 1 + 1
23 1p1e2 1 + 1 = 2
24 22 23 eqtrdi x = 1 x + 1 = 2
25 24 fveq2d x = 1 P x + 1 = P 2
26 21 25 preq12d x = 1 P x P x + 1 = P 1 P 2
27 26 eleq1d x = 1 P x P x + 1 Edg G P 1 P 2 Edg G
28 fveq2 x = 2 P x = P 2
29 oveq1 x = 2 x + 1 = 2 + 1
30 2p1e3 2 + 1 = 3
31 29 30 eqtrdi x = 2 x + 1 = 3
32 31 fveq2d x = 2 P x + 1 = P 3
33 28 32 preq12d x = 2 P x P x + 1 = P 2 P 3
34 33 eleq1d x = 2 P x P x + 1 Edg G P 2 P 3 Edg G
35 14 15 16 20 27 34 raltp x 0 1 2 P x P x + 1 Edg G P 0 P 1 Edg G P 1 P 2 Edg G P 2 P 3 Edg G
36 simpr1 P 0 = P 3 P 0 P 1 Edg G P 1 P 2 Edg G P 2 P 3 Edg G P 0 P 1 Edg G
37 preq2 P 0 = P 3 P 2 P 0 = P 2 P 3
38 prcom P 2 P 0 = P 0 P 2
39 37 38 eqtr3di P 0 = P 3 P 2 P 3 = P 0 P 2
40 39 eleq1d P 0 = P 3 P 2 P 3 Edg G P 0 P 2 Edg G
41 40 biimpcd P 2 P 3 Edg G P 0 = P 3 P 0 P 2 Edg G
42 41 3ad2ant3 P 0 P 1 Edg G P 1 P 2 Edg G P 2 P 3 Edg G P 0 = P 3 P 0 P 2 Edg G
43 42 impcom P 0 = P 3 P 0 P 1 Edg G P 1 P 2 Edg G P 2 P 3 Edg G P 0 P 2 Edg G
44 simpr2 P 0 = P 3 P 0 P 1 Edg G P 1 P 2 Edg G P 2 P 3 Edg G P 1 P 2 Edg G
45 36 43 44 3jca P 0 = P 3 P 0 P 1 Edg G P 1 P 2 Edg G P 2 P 3 Edg G P 0 P 1 Edg G P 0 P 2 Edg G P 1 P 2 Edg G
46 45 ex P 0 = P 3 P 0 P 1 Edg G P 1 P 2 Edg G P 2 P 3 Edg G P 0 P 1 Edg G P 0 P 2 Edg G P 1 P 2 Edg G
47 35 46 biimtrid P 0 = P 3 x 0 1 2 P x P x + 1 Edg G P 0 P 1 Edg G P 0 P 2 Edg G P 1 P 2 Edg G
48 13 47 biimtrdi F = 3 P 0 = P F x 0 1 2 P x P x + 1 Edg G P 0 P 1 Edg G P 0 P 2 Edg G P 1 P 2 Edg G
49 48 impcom P 0 = P F F = 3 x 0 1 2 P x P x + 1 Edg G P 0 P 1 Edg G P 0 P 2 Edg G P 1 P 2 Edg G
50 49 adantl G UPGraph F Paths G P P 0 = P F F = 3 x 0 1 2 P x P x + 1 Edg G P 0 P 1 Edg G P 0 P 2 Edg G P 1 P 2 Edg G
51 11 50 sylbid G UPGraph F Paths G P P 0 = P F F = 3 x 0 ..^ F P x P x + 1 Edg G P 0 P 1 Edg G P 0 P 2 Edg G P 1 P 2 Edg G
52 5 51 mpd G UPGraph F Paths G P P 0 = P F F = 3 P 0 P 1 Edg G P 0 P 2 Edg G P 1 P 2 Edg G