Step |
Hyp |
Ref |
Expression |
1 |
|
pthiswlk |
|
2 |
|
eqid |
|
3 |
2
|
upgrwlkvtxedg |
|
4 |
1 3
|
sylan2 |
|
5 |
4
|
adantr |
|
6 |
|
oveq2 |
|
7 |
|
fzo0to3tp |
|
8 |
6 7
|
eqtrdi |
|
9 |
8
|
adantl |
|
10 |
9
|
adantl |
|
11 |
10
|
raleqdv |
|
12 |
|
fveq2 |
|
13 |
12
|
eqeq2d |
|
14 |
|
c0ex |
|
15 |
|
1ex |
|
16 |
|
2ex |
|
17 |
|
fveq2 |
|
18 |
|
fv0p1e1 |
|
19 |
17 18
|
preq12d |
|
20 |
19
|
eleq1d |
|
21 |
|
fveq2 |
|
22 |
|
oveq1 |
|
23 |
|
1p1e2 |
|
24 |
22 23
|
eqtrdi |
|
25 |
24
|
fveq2d |
|
26 |
21 25
|
preq12d |
|
27 |
26
|
eleq1d |
|
28 |
|
fveq2 |
|
29 |
|
oveq1 |
|
30 |
|
2p1e3 |
|
31 |
29 30
|
eqtrdi |
|
32 |
31
|
fveq2d |
|
33 |
28 32
|
preq12d |
|
34 |
33
|
eleq1d |
|
35 |
14 15 16 20 27 34
|
raltp |
|
36 |
|
simpr1 |
|
37 |
|
preq2 |
|
38 |
|
prcom |
|
39 |
37 38
|
eqtr3di |
|
40 |
39
|
eleq1d |
|
41 |
40
|
biimpcd |
|
42 |
41
|
3ad2ant3 |
|
43 |
42
|
impcom |
|
44 |
|
simpr2 |
|
45 |
36 43 44
|
3jca |
|
46 |
45
|
ex |
|
47 |
35 46
|
biimtrid |
|
48 |
13 47
|
biimtrdi |
|
49 |
48
|
impcom |
|
50 |
49
|
adantl |
|
51 |
11 50
|
sylbid |
|
52 |
5 51
|
mpd |
|