Metamath Proof Explorer


Theorem cycsubmel

Description: Characterization of an element of the set of nonnegative integer powers of an element A . Although this theorem holds for any class G , the definition of F is only meaningful if G is a monoid or at least a unital magma. (Contributed by AV, 28-Dec-2023)

Ref Expression
Hypotheses cycsubm.b B=BaseG
cycsubm.t ·˙=G
cycsubm.f F=x0x·˙A
cycsubm.c C=ranF
Assertion cycsubmel XCi0X=i·˙A

Proof

Step Hyp Ref Expression
1 cycsubm.b B=BaseG
2 cycsubm.t ·˙=G
3 cycsubm.f F=x0x·˙A
4 cycsubm.c C=ranF
5 4 eleq2i XCXranF
6 ovex x·˙AV
7 6 3 fnmpti FFn0
8 fvelrnb FFn0XranFi0Fi=X
9 7 8 ax-mp XranFi0Fi=X
10 oveq1 x=ix·˙A=i·˙A
11 ovex i·˙AV
12 10 3 11 fvmpt i0Fi=i·˙A
13 12 eqeq1d i0Fi=Xi·˙A=X
14 eqcom i·˙A=XX=i·˙A
15 13 14 bitrdi i0Fi=XX=i·˙A
16 15 rexbiia i0Fi=Xi0X=i·˙A
17 5 9 16 3bitri XCi0X=i·˙A