Metamath Proof Explorer


Theorem cygabl

Description: A cyclic group is abelian. (Contributed by Mario Carneiro, 21-Apr-2016) (Proof shortened by AV, 20-Jan-2024)

Ref Expression
Assertion cygabl GCycGrpGAbel

Proof

Step Hyp Ref Expression
1 eqid BaseG=BaseG
2 eqid G=G
3 1 2 iscyg3 GCycGrpGGrpxBaseGyBaseGny=nGx
4 eqidd GGrpxBaseGyBaseGny=nGxBaseG=BaseG
5 eqidd GGrpxBaseGyBaseGny=nGx+G=+G
6 simpll GGrpxBaseGyBaseGny=nGxGGrp
7 oveq1 n=inGx=iGx
8 7 eqeq2d n=iy=nGxy=iGx
9 8 cbvrexvw ny=nGxiy=iGx
10 9 biimpi ny=nGxiy=iGx
11 10 ralimi yBaseGny=nGxyBaseGiy=iGx
12 11 adantl GGrpxBaseGyBaseGny=nGxyBaseGiy=iGx
13 12 3ad2ant1 GGrpxBaseGyBaseGny=nGxaBaseGbBaseGyBaseGiy=iGx
14 simpll GGrpxBaseGmnGGrp
15 simpr GGrpxBaseGxBaseG
16 15 anim1ci GGrpxBaseGmnmnxBaseG
17 df-3an mnxBaseGmnxBaseG
18 16 17 sylibr GGrpxBaseGmnmnxBaseG
19 eqid +G=+G
20 1 2 19 mulgdir GGrpmnxBaseGm+nGx=mGx+GnGx
21 14 18 20 syl2anc GGrpxBaseGmnm+nGx=mGx+GnGx
22 21 ralrimivva GGrpxBaseGmnm+nGx=mGx+GnGx
23 22 adantr GGrpxBaseGyBaseGny=nGxmnm+nGx=mGx+GnGx
24 23 3ad2ant1 GGrpxBaseGyBaseGny=nGxaBaseGbBaseGmnm+nGx=mGx+GnGx
25 simp2 GGrpxBaseGyBaseGny=nGxaBaseGbBaseGaBaseG
26 simp3 GGrpxBaseGyBaseGny=nGxaBaseGbBaseGbBaseG
27 zsscn
28 27 a1i GGrpxBaseGyBaseGny=nGxaBaseGbBaseG
29 13 24 25 26 28 cyccom GGrpxBaseGyBaseGny=nGxaBaseGbBaseGa+Gb=b+Ga
30 4 5 6 29 isabld GGrpxBaseGyBaseGny=nGxGAbel
31 30 r19.29an GGrpxBaseGyBaseGny=nGxGAbel
32 3 31 sylbi GCycGrpGAbel