Metamath Proof Explorer


Theorem cygabl

Description: A cyclic group is abelian. (Contributed by Mario Carneiro, 21-Apr-2016) (Proof shortened by AV, 20-Jan-2024)

Ref Expression
Assertion cygabl G CycGrp G Abel

Proof

Step Hyp Ref Expression
1 eqid Base G = Base G
2 eqid G = G
3 1 2 iscyg3 G CycGrp G Grp x Base G y Base G n y = n G x
4 eqidd G Grp x Base G y Base G n y = n G x Base G = Base G
5 eqidd G Grp x Base G y Base G n y = n G x + G = + G
6 simpll G Grp x Base G y Base G n y = n G x G Grp
7 oveq1 n = i n G x = i G x
8 7 eqeq2d n = i y = n G x y = i G x
9 8 cbvrexvw n y = n G x i y = i G x
10 9 biimpi n y = n G x i y = i G x
11 10 ralimi y Base G n y = n G x y Base G i y = i G x
12 11 adantl G Grp x Base G y Base G n y = n G x y Base G i y = i G x
13 12 3ad2ant1 G Grp x Base G y Base G n y = n G x a Base G b Base G y Base G i y = i G x
14 simpll G Grp x Base G m n G Grp
15 simpr G Grp x Base G x Base G
16 15 anim1ci G Grp x Base G m n m n x Base G
17 df-3an m n x Base G m n x Base G
18 16 17 sylibr G Grp x Base G m n m n x Base G
19 eqid + G = + G
20 1 2 19 mulgdir G Grp m n x Base G m + n G x = m G x + G n G x
21 14 18 20 syl2anc G Grp x Base G m n m + n G x = m G x + G n G x
22 21 ralrimivva G Grp x Base G m n m + n G x = m G x + G n G x
23 22 adantr G Grp x Base G y Base G n y = n G x m n m + n G x = m G x + G n G x
24 23 3ad2ant1 G Grp x Base G y Base G n y = n G x a Base G b Base G m n m + n G x = m G x + G n G x
25 simp2 G Grp x Base G y Base G n y = n G x a Base G b Base G a Base G
26 simp3 G Grp x Base G y Base G n y = n G x a Base G b Base G b Base G
27 zsscn
28 27 a1i G Grp x Base G y Base G n y = n G x a Base G b Base G
29 13 24 25 26 28 cyccom G Grp x Base G y Base G n y = n G x a Base G b Base G a + G b = b + G a
30 4 5 6 29 isabld G Grp x Base G y Base G n y = n G x G Abel
31 30 r19.29an G Grp x Base G y Base G n y = n G x G Abel
32 3 31 sylbi G CycGrp G Abel