Description: A cyclic group is abelian. (Contributed by Mario Carneiro, 21-Apr-2016) (Proof shortened by AV, 20-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | cygabl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | eqid | |
|
3 | 1 2 | iscyg3 | |
4 | eqidd | |
|
5 | eqidd | |
|
6 | simpll | |
|
7 | oveq1 | |
|
8 | 7 | eqeq2d | |
9 | 8 | cbvrexvw | |
10 | 9 | biimpi | |
11 | 10 | ralimi | |
12 | 11 | adantl | |
13 | 12 | 3ad2ant1 | |
14 | simpll | |
|
15 | simpr | |
|
16 | 15 | anim1ci | |
17 | df-3an | |
|
18 | 16 17 | sylibr | |
19 | eqid | |
|
20 | 1 2 19 | mulgdir | |
21 | 14 18 20 | syl2anc | |
22 | 21 | ralrimivva | |
23 | 22 | adantr | |
24 | 23 | 3ad2ant1 | |
25 | simp2 | |
|
26 | simp3 | |
|
27 | zsscn | |
|
28 | 27 | a1i | |
29 | 13 24 25 26 28 | cyccom | |
30 | 4 5 6 29 | isabld | |
31 | 30 | r19.29an | |
32 | 3 31 | sylbi | |