Description: Lemma for dalemdnee . (Contributed by NM, 10-Aug-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dalema.ph | |
|
dalemc.l | |
||
dalemc.j | |
||
dalemc.a | |
||
dalem3.m | |
||
dalem3.o | |
||
dalem3.y | |
||
dalem3.z | |
||
dalem3.d | |
||
dalem3.e | |
||
Assertion | dalem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalema.ph | |
|
2 | dalemc.l | |
|
3 | dalemc.j | |
|
4 | dalemc.a | |
|
5 | dalem3.m | |
|
6 | dalem3.o | |
|
7 | dalem3.y | |
|
8 | dalem3.z | |
|
9 | dalem3.d | |
|
10 | dalem3.e | |
|
11 | 1 2 3 4 | dalemswapyz | |
12 | 11 | adantr | |
13 | 1 | dalemkelat | |
14 | 1 3 4 | dalempjqeb | |
15 | 1 3 4 | dalemsjteb | |
16 | eqid | |
|
17 | 16 5 | latmcom | |
18 | 13 14 15 17 | syl3anc | |
19 | 9 18 | eqtrid | |
20 | 19 | neeq1d | |
21 | 20 | biimpa | |
22 | biid | |
|
23 | eqid | |
|
24 | eqid | |
|
25 | 22 2 3 4 5 6 8 7 23 24 | dalem3 | |
26 | 12 21 25 | syl2anc | |
27 | 19 | adantr | |
28 | 1 | dalemkehl | |
29 | 1 | dalemqea | |
30 | 1 | dalemrea | |
31 | 16 3 4 | hlatjcl | |
32 | 28 29 30 31 | syl3anc | |
33 | 1 3 4 | dalemtjueb | |
34 | 16 5 | latmcom | |
35 | 13 32 33 34 | syl3anc | |
36 | 10 35 | eqtrid | |
37 | 36 | adantr | |
38 | 26 27 37 | 3netr4d | |