Metamath Proof Explorer


Theorem dalem4

Description: Lemma for dalemdnee . (Contributed by NM, 10-Aug-2012)

Ref Expression
Hypotheses dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalemc.l ˙=K
dalemc.j ˙=joinK
dalemc.a A=AtomsK
dalem3.m ˙=meetK
dalem3.o O=LPlanesK
dalem3.y Y=P˙Q˙R
dalem3.z Z=S˙T˙U
dalem3.d D=P˙Q˙S˙T
dalem3.e E=Q˙R˙T˙U
Assertion dalem4 φDTDE

Proof

Step Hyp Ref Expression
1 dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalemc.l ˙=K
3 dalemc.j ˙=joinK
4 dalemc.a A=AtomsK
5 dalem3.m ˙=meetK
6 dalem3.o O=LPlanesK
7 dalem3.y Y=P˙Q˙R
8 dalem3.z Z=S˙T˙U
9 dalem3.d D=P˙Q˙S˙T
10 dalem3.e E=Q˙R˙T˙U
11 1 2 3 4 dalemswapyz φKHLCBaseKSATAUAPAQARAZOYO¬C˙S˙T¬C˙T˙U¬C˙U˙S¬C˙P˙Q¬C˙Q˙R¬C˙R˙PC˙S˙PC˙T˙QC˙U˙R
12 11 adantr φDTKHLCBaseKSATAUAPAQARAZOYO¬C˙S˙T¬C˙T˙U¬C˙U˙S¬C˙P˙Q¬C˙Q˙R¬C˙R˙PC˙S˙PC˙T˙QC˙U˙R
13 1 dalemkelat φKLat
14 1 3 4 dalempjqeb φP˙QBaseK
15 1 3 4 dalemsjteb φS˙TBaseK
16 eqid BaseK=BaseK
17 16 5 latmcom KLatP˙QBaseKS˙TBaseKP˙Q˙S˙T=S˙T˙P˙Q
18 13 14 15 17 syl3anc φP˙Q˙S˙T=S˙T˙P˙Q
19 9 18 eqtrid φD=S˙T˙P˙Q
20 19 neeq1d φDTS˙T˙P˙QT
21 20 biimpa φDTS˙T˙P˙QT
22 biid KHLCBaseKSATAUAPAQARAZOYO¬C˙S˙T¬C˙T˙U¬C˙U˙S¬C˙P˙Q¬C˙Q˙R¬C˙R˙PC˙S˙PC˙T˙QC˙U˙RKHLCBaseKSATAUAPAQARAZOYO¬C˙S˙T¬C˙T˙U¬C˙U˙S¬C˙P˙Q¬C˙Q˙R¬C˙R˙PC˙S˙PC˙T˙QC˙U˙R
23 eqid S˙T˙P˙Q=S˙T˙P˙Q
24 eqid T˙U˙Q˙R=T˙U˙Q˙R
25 22 2 3 4 5 6 8 7 23 24 dalem3 KHLCBaseKSATAUAPAQARAZOYO¬C˙S˙T¬C˙T˙U¬C˙U˙S¬C˙P˙Q¬C˙Q˙R¬C˙R˙PC˙S˙PC˙T˙QC˙U˙RS˙T˙P˙QTS˙T˙P˙QT˙U˙Q˙R
26 12 21 25 syl2anc φDTS˙T˙P˙QT˙U˙Q˙R
27 19 adantr φDTD=S˙T˙P˙Q
28 1 dalemkehl φKHL
29 1 dalemqea φQA
30 1 dalemrea φRA
31 16 3 4 hlatjcl KHLQARAQ˙RBaseK
32 28 29 30 31 syl3anc φQ˙RBaseK
33 1 3 4 dalemtjueb φT˙UBaseK
34 16 5 latmcom KLatQ˙RBaseKT˙UBaseKQ˙R˙T˙U=T˙U˙Q˙R
35 13 32 33 34 syl3anc φQ˙R˙T˙U=T˙U˙Q˙R
36 10 35 eqtrid φE=T˙U˙Q˙R
37 36 adantr φDTE=T˙U˙Q˙R
38 26 27 37 3netr4d φDTDE