Metamath Proof Explorer


Theorem dchreq

Description: A Dirichlet character is determined by its values on the unit group. (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses dchrresb.g G=DChrN
dchrresb.z Z=/N
dchrresb.b D=BaseG
dchrresb.u U=UnitZ
dchrresb.x φXD
dchrresb.Y φYD
Assertion dchreq φX=YkUXk=Yk

Proof

Step Hyp Ref Expression
1 dchrresb.g G=DChrN
2 dchrresb.z Z=/N
3 dchrresb.b D=BaseG
4 dchrresb.u U=UnitZ
5 dchrresb.x φXD
6 dchrresb.Y φYD
7 eldif kBaseZUkBaseZ¬kU
8 eqid BaseZ=BaseZ
9 5 adantr φkBaseZXD
10 simpr φkBaseZkBaseZ
11 1 2 3 8 4 9 10 dchrn0 φkBaseZXk0kU
12 11 biimpd φkBaseZXk0kU
13 12 necon1bd φkBaseZ¬kUXk=0
14 13 impr φkBaseZ¬kUXk=0
15 7 14 sylan2b φkBaseZUXk=0
16 6 adantr φkBaseZYD
17 1 2 3 8 4 16 10 dchrn0 φkBaseZYk0kU
18 17 biimpd φkBaseZYk0kU
19 18 necon1bd φkBaseZ¬kUYk=0
20 19 impr φkBaseZ¬kUYk=0
21 7 20 sylan2b φkBaseZUYk=0
22 15 21 eqtr4d φkBaseZUXk=Yk
23 22 ralrimiva φkBaseZUXk=Yk
24 1 2 3 8 5 dchrf φX:BaseZ
25 24 ffnd φXFnBaseZ
26 1 2 3 8 6 dchrf φY:BaseZ
27 26 ffnd φYFnBaseZ
28 eqfnfv XFnBaseZYFnBaseZX=YkBaseZXk=Yk
29 25 27 28 syl2anc φX=YkBaseZXk=Yk
30 8 4 unitss UBaseZ
31 undif UBaseZUBaseZU=BaseZ
32 30 31 mpbi UBaseZU=BaseZ
33 32 raleqi kUBaseZUXk=YkkBaseZXk=Yk
34 ralunb kUBaseZUXk=YkkUXk=YkkBaseZUXk=Yk
35 33 34 bitr3i kBaseZXk=YkkUXk=YkkBaseZUXk=Yk
36 29 35 bitrdi φX=YkUXk=YkkBaseZUXk=Yk
37 23 36 mpbiran2d φX=YkUXk=Yk