Description: A Dirichlet character is determined by its values on the unit group. (Contributed by Mario Carneiro, 28-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dchrresb.g | |
|
dchrresb.z | |
||
dchrresb.b | |
||
dchrresb.u | |
||
dchrresb.x | |
||
dchrresb.Y | |
||
Assertion | dchreq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrresb.g | |
|
2 | dchrresb.z | |
|
3 | dchrresb.b | |
|
4 | dchrresb.u | |
|
5 | dchrresb.x | |
|
6 | dchrresb.Y | |
|
7 | eldif | |
|
8 | eqid | |
|
9 | 5 | adantr | |
10 | simpr | |
|
11 | 1 2 3 8 4 9 10 | dchrn0 | |
12 | 11 | biimpd | |
13 | 12 | necon1bd | |
14 | 13 | impr | |
15 | 7 14 | sylan2b | |
16 | 6 | adantr | |
17 | 1 2 3 8 4 16 10 | dchrn0 | |
18 | 17 | biimpd | |
19 | 18 | necon1bd | |
20 | 19 | impr | |
21 | 7 20 | sylan2b | |
22 | 15 21 | eqtr4d | |
23 | 22 | ralrimiva | |
24 | 1 2 3 8 5 | dchrf | |
25 | 24 | ffnd | |
26 | 1 2 3 8 6 | dchrf | |
27 | 26 | ffnd | |
28 | eqfnfv | |
|
29 | 25 27 28 | syl2anc | |
30 | 8 4 | unitss | |
31 | undif | |
|
32 | 30 31 | mpbi | |
33 | 32 | raleqi | |
34 | ralunb | |
|
35 | 33 34 | bitr3i | |
36 | 29 35 | bitrdi | |
37 | 23 36 | mpbiran2d | |