Metamath Proof Explorer


Theorem dchrisumn0

Description: The sum sum_ n e. NN , X ( n ) / n is nonzero for all non-principal Dirichlet characters (i.e. the assumption X e. W is contradictory). This is the key result that allows us to eliminate the conditionals from dchrmusum2 and dchrvmasumif . Lemma 9.4.4 of Shapiro, p. 382. (Contributed by Mario Carneiro, 12-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z = /N
rpvmasum.l L = ℤRHom Z
rpvmasum.a φ N
dchrmusum.g G = DChr N
dchrmusum.d D = Base G
dchrmusum.1 1 ˙ = 0 G
dchrmusum.b φ X D
dchrmusum.n1 φ X 1 ˙
dchrmusum.f F = a X L a a
dchrmusum.c φ C 0 +∞
dchrmusum.t φ seq 1 + F T
dchrmusum.2 φ y 1 +∞ seq 1 + F y T C y
Assertion dchrisumn0 φ T 0

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z = /N
2 rpvmasum.l L = ℤRHom Z
3 rpvmasum.a φ N
4 dchrmusum.g G = DChr N
5 dchrmusum.d D = Base G
6 dchrmusum.1 1 ˙ = 0 G
7 dchrmusum.b φ X D
8 dchrmusum.n1 φ X 1 ˙
9 dchrmusum.f F = a X L a a
10 dchrmusum.c φ C 0 +∞
11 dchrmusum.t φ seq 1 + F T
12 dchrmusum.2 φ y 1 +∞ seq 1 + F y T C y
13 3 adantr φ T = 0 N
14 eqid y D 1 ˙ | m y L m m = 0 = y D 1 ˙ | m y L m m = 0
15 1 2 3 4 5 6 7 8 9 10 11 12 14 dchrvmaeq0 φ X y D 1 ˙ | m y L m m = 0 T = 0
16 15 biimpar φ T = 0 X y D 1 ˙ | m y L m m = 0
17 1 2 13 4 5 6 14 16 dchrisum0 ¬ φ T = 0
18 17 imnani φ ¬ T = 0
19 18 neqned φ T 0