Metamath Proof Explorer


Theorem dchrisumn0

Description: The sum sum_ n e. NN , X ( n ) / n is nonzero for all non-principal Dirichlet characters (i.e. the assumption X e. W is contradictory). This is the key result that allows to eliminate the conditionals from dchrmusum2 and dchrvmasumif . Lemma 9.4.4 of Shapiro, p. 382. (Contributed by Mario Carneiro, 12-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z=/N
rpvmasum.l L=ℤRHomZ
rpvmasum.a φN
dchrmusum.g G=DChrN
dchrmusum.d D=BaseG
dchrmusum.1 1˙=0G
dchrmusum.b φXD
dchrmusum.n1 φX1˙
dchrmusum.f F=aXLaa
dchrmusum.c φC0+∞
dchrmusum.t φseq1+FT
dchrmusum.2 φy1+∞seq1+FyTCy
Assertion dchrisumn0 φT0

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z=/N
2 rpvmasum.l L=ℤRHomZ
3 rpvmasum.a φN
4 dchrmusum.g G=DChrN
5 dchrmusum.d D=BaseG
6 dchrmusum.1 1˙=0G
7 dchrmusum.b φXD
8 dchrmusum.n1 φX1˙
9 dchrmusum.f F=aXLaa
10 dchrmusum.c φC0+∞
11 dchrmusum.t φseq1+FT
12 dchrmusum.2 φy1+∞seq1+FyTCy
13 3 adantr φT=0N
14 eqid yD1˙|myLmm=0=yD1˙|myLmm=0
15 1 2 3 4 5 6 7 8 9 10 11 12 14 dchrvmaeq0 φXyD1˙|myLmm=0T=0
16 15 biimpar φT=0XyD1˙|myLmm=0
17 1 2 13 4 5 6 14 16 dchrisum0 ¬φT=0
18 17 imnani φ¬T=0
19 18 neqned φT0