Metamath Proof Explorer


Theorem dchrisum0

Description: The sum sum_ n e. NN , X ( n ) / n is nonzero for all non-principal Dirichlet characters (i.e. the assumption X e. W is contradictory). This is the key result that allows us to eliminate the conditionals from dchrmusum2 and dchrvmasumif . Lemma 9.4.4 of Shapiro, p. 382. (Contributed by Mario Carneiro, 12-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z = /N
rpvmasum.l L = ℤRHom Z
rpvmasum.a φ N
rpvmasum2.g G = DChr N
rpvmasum2.d D = Base G
rpvmasum2.1 1 ˙ = 0 G
rpvmasum2.w W = y D 1 ˙ | m y L m m = 0
dchrisum0.b φ X W
Assertion dchrisum0 ¬ φ

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z = /N
2 rpvmasum.l L = ℤRHom Z
3 rpvmasum.a φ N
4 rpvmasum2.g G = DChr N
5 rpvmasum2.d D = Base G
6 rpvmasum2.1 1 ˙ = 0 G
7 rpvmasum2.w W = y D 1 ˙ | m y L m m = 0
8 dchrisum0.b φ X W
9 eqid b y i | i b X L y = b y i | i b X L y
10 7 ssrab3 W D 1 ˙
11 difss D 1 ˙ D
12 10 11 sstri W D
13 12 8 sseldi φ X D
14 1 2 3 4 5 6 7 8 dchrisum0re φ X : Base Z
15 fveq2 k = m d k = m d
16 15 oveq2d k = m d X L m k = X L m m d
17 rpre x + x
18 17 adantl φ x + x
19 13 ad3antrrr φ x + k 1 x m i | i k X D
20 elrabi m i | i k m
21 20 nnzd m i | i k m
22 21 adantl φ x + k 1 x m i | i k m
23 4 1 5 2 19 22 dchrzrhcl φ x + k 1 x m i | i k X L m
24 elfznn k 1 x k
25 24 adantl φ x + k 1 x k
26 25 nnrpd φ x + k 1 x k +
27 26 rpsqrtcld φ x + k 1 x k +
28 27 rpcnd φ x + k 1 x k
29 28 adantr φ x + k 1 x m i | i k k
30 27 rpne0d φ x + k 1 x k 0
31 30 adantr φ x + k 1 x m i | i k k 0
32 23 29 31 divcld φ x + k 1 x m i | i k X L m k
33 32 anasss φ x + k 1 x m i | i k X L m k
34 16 18 33 dvdsflsumcom φ x + k = 1 x m i | i k X L m k = m = 1 x d = 1 x m X L m m d
35 1 2 3 4 5 6 9 dchrisum0fval k b y i | i b X L y k = m i | i k X L m
36 25 35 syl φ x + k 1 x b y i | i b X L y k = m i | i k X L m
37 36 oveq1d φ x + k 1 x b y i | i b X L y k k = m i | i k X L m k
38 fzfid φ x + k 1 x 1 k Fin
39 dvdsssfz1 k i | i k 1 k
40 25 39 syl φ x + k 1 x i | i k 1 k
41 38 40 ssfid φ x + k 1 x i | i k Fin
42 41 28 23 30 fsumdivc φ x + k 1 x m i | i k X L m k = m i | i k X L m k
43 37 42 eqtrd φ x + k 1 x b y i | i b X L y k k = m i | i k X L m k
44 43 sumeq2dv φ x + k = 1 x b y i | i b X L y k k = k = 1 x m i | i k X L m k
45 rprege0 x + x 0 x
46 45 adantl φ x + x 0 x
47 resqrtth x 0 x x 2 = x
48 46 47 syl φ x + x 2 = x
49 48 fveq2d φ x + x 2 = x
50 49 oveq2d φ x + 1 x 2 = 1 x
51 48 fvoveq1d φ x + x 2 m = x m
52 51 oveq2d φ x + 1 x 2 m = 1 x m
53 52 sumeq1d φ x + d = 1 x 2 m X L m m d = d = 1 x m X L m m d
54 53 adantr φ x + m 1 x 2 d = 1 x 2 m X L m m d = d = 1 x m X L m m d
55 50 54 sumeq12dv φ x + m = 1 x 2 d = 1 x 2 m X L m m d = m = 1 x d = 1 x m X L m m d
56 34 44 55 3eqtr4d φ x + k = 1 x b y i | i b X L y k k = m = 1 x 2 d = 1 x 2 m X L m m d
57 56 mpteq2dva φ x + k = 1 x b y i | i b X L y k k = x + m = 1 x 2 d = 1 x 2 m X L m m d
58 rpsqrtcl x + x +
59 58 adantl φ x + x +
60 eqidd φ x + x = x + x
61 eqidd φ z + m = 1 z 2 d = 1 z 2 m X L m m d = z + m = 1 z 2 d = 1 z 2 m X L m m d
62 oveq1 z = x z 2 = x 2
63 62 fveq2d z = x z 2 = x 2
64 63 oveq2d z = x 1 z 2 = 1 x 2
65 62 fvoveq1d z = x z 2 m = x 2 m
66 65 oveq2d z = x 1 z 2 m = 1 x 2 m
67 66 sumeq1d z = x d = 1 z 2 m X L m m d = d = 1 x 2 m X L m m d
68 67 adantr z = x m 1 z 2 d = 1 z 2 m X L m m d = d = 1 x 2 m X L m m d
69 64 68 sumeq12dv z = x m = 1 z 2 d = 1 z 2 m X L m m d = m = 1 x 2 d = 1 x 2 m X L m m d
70 59 60 61 69 fmptco φ z + m = 1 z 2 d = 1 z 2 m X L m m d x + x = x + m = 1 x 2 d = 1 x 2 m X L m m d
71 57 70 eqtr4d φ x + k = 1 x b y i | i b X L y k k = z + m = 1 z 2 d = 1 z 2 m X L m m d x + x
72 eqid a X L a a = a X L a a
73 1 2 3 4 5 6 7 8 72 dchrisum0lema φ t c 0 +∞ seq 1 + a X L a a t y 1 +∞ seq 1 + a X L a a y t c y
74 3 adantr φ c 0 +∞ seq 1 + a X L a a t y 1 +∞ seq 1 + a X L a a y t c y N
75 8 adantr φ c 0 +∞ seq 1 + a X L a a t y 1 +∞ seq 1 + a X L a a y t c y X W
76 simprl φ c 0 +∞ seq 1 + a X L a a t y 1 +∞ seq 1 + a X L a a y t c y c 0 +∞
77 simprrl φ c 0 +∞ seq 1 + a X L a a t y 1 +∞ seq 1 + a X L a a y t c y seq 1 + a X L a a t
78 simprrr φ c 0 +∞ seq 1 + a X L a a t y 1 +∞ seq 1 + a X L a a y t c y y 1 +∞ seq 1 + a X L a a y t c y
79 1 2 74 4 5 6 7 75 72 76 77 78 dchrisum0lem3 φ c 0 +∞ seq 1 + a X L a a t y 1 +∞ seq 1 + a X L a a y t c y z + m = 1 z 2 d = 1 z 2 m X L m m d 𝑂1
80 79 rexlimdvaa φ c 0 +∞ seq 1 + a X L a a t y 1 +∞ seq 1 + a X L a a y t c y z + m = 1 z 2 d = 1 z 2 m X L m m d 𝑂1
81 80 exlimdv φ t c 0 +∞ seq 1 + a X L a a t y 1 +∞ seq 1 + a X L a a y t c y z + m = 1 z 2 d = 1 z 2 m X L m m d 𝑂1
82 73 81 mpd φ z + m = 1 z 2 d = 1 z 2 m X L m m d 𝑂1
83 o1f z + m = 1 z 2 d = 1 z 2 m X L m m d 𝑂1 z + m = 1 z 2 d = 1 z 2 m X L m m d : dom z + m = 1 z 2 d = 1 z 2 m X L m m d
84 82 83 syl φ z + m = 1 z 2 d = 1 z 2 m X L m m d : dom z + m = 1 z 2 d = 1 z 2 m X L m m d
85 sumex m = 1 z 2 d = 1 z 2 m X L m m d V
86 eqid z + m = 1 z 2 d = 1 z 2 m X L m m d = z + m = 1 z 2 d = 1 z 2 m X L m m d
87 85 86 dmmpti dom z + m = 1 z 2 d = 1 z 2 m X L m m d = +
88 87 feq2i z + m = 1 z 2 d = 1 z 2 m X L m m d : dom z + m = 1 z 2 d = 1 z 2 m X L m m d z + m = 1 z 2 d = 1 z 2 m X L m m d : +
89 84 88 sylib φ z + m = 1 z 2 d = 1 z 2 m X L m m d : +
90 rpssre +
91 90 a1i φ +
92 resqcl t t 2
93 0red φ t x + t 2 x 0
94 simplr φ t x + t 2 x t
95 simplrr φ t x + t 2 x 0 t t 2 x
96 45 ad2antrl φ t x + t 2 x x 0 x
97 96 adantr φ t x + t 2 x 0 t x 0 x
98 97 47 syl φ t x + t 2 x 0 t x 2 = x
99 95 98 breqtrrd φ t x + t 2 x 0 t t 2 x 2
100 94 adantr φ t x + t 2 x 0 t t
101 59 rpred φ x + x
102 101 ad2ant2r φ t x + t 2 x x
103 102 adantr φ t x + t 2 x 0 t x
104 simpr φ t x + t 2 x 0 t 0 t
105 sqrtge0 x 0 x 0 x
106 96 105 syl φ t x + t 2 x 0 x
107 106 adantr φ t x + t 2 x 0 t 0 x
108 100 103 104 107 le2sqd φ t x + t 2 x 0 t t x t 2 x 2
109 99 108 mpbird φ t x + t 2 x 0 t t x
110 94 adantr φ t x + t 2 x t 0 t
111 0red φ t x + t 2 x t 0 0
112 102 adantr φ t x + t 2 x t 0 x
113 simpr φ t x + t 2 x t 0 t 0
114 106 adantr φ t x + t 2 x t 0 0 x
115 110 111 112 113 114 letrd φ t x + t 2 x t 0 t x
116 93 94 109 115 lecasei φ t x + t 2 x t x
117 116 expr φ t x + t 2 x t x
118 117 ralrimiva φ t x + t 2 x t x
119 breq1 c = t 2 c x t 2 x
120 119 rspceaimv t 2 x + t 2 x t x c x + c x t x
121 92 118 120 syl2an2 φ t c x + c x t x
122 89 82 59 91 121 o1compt φ z + m = 1 z 2 d = 1 z 2 m X L m m d x + x 𝑂1
123 71 122 eqeltrd φ x + k = 1 x b y i | i b X L y k k 𝑂1
124 1 2 3 4 5 6 9 13 14 123 dchrisum0fno1 ¬ φ