Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|
2 |
|
rpvmasum.l |
|
3 |
|
rpvmasum.a |
|
4 |
|
rpvmasum2.g |
|
5 |
|
rpvmasum2.d |
|
6 |
|
rpvmasum2.1 |
|
7 |
|
rpvmasum2.w |
|
8 |
|
dchrisum0.b |
|
9 |
|
dchrisum0lem1.f |
|
10 |
|
dchrisum0.c |
|
11 |
|
dchrisum0.s |
|
12 |
|
dchrisum0.1 |
|
13 |
|
1red |
|
14 |
|
sumex |
|
15 |
14
|
a1i |
|
16 |
|
sumex |
|
17 |
16
|
a1i |
|
18 |
7
|
ssrab3 |
|
19 |
|
difss |
|
20 |
18 19
|
sstri |
|
21 |
20 8
|
sselid |
|
22 |
18 8
|
sselid |
|
23 |
|
eldifsni |
|
24 |
22 23
|
syl |
|
25 |
|
eqid |
|
26 |
1 2 3 4 5 6 21 24 25
|
dchrmusumlema |
|
27 |
3
|
adantr |
|
28 |
8
|
adantr |
|
29 |
10
|
adantr |
|
30 |
11
|
adantr |
|
31 |
12
|
adantr |
|
32 |
|
eqid |
|
33 |
32
|
divsqrsum |
|
34 |
32
|
divsqrsumf |
|
35 |
|
ax-resscn |
|
36 |
|
fss |
|
37 |
34 35 36
|
mp2an |
|
38 |
37
|
a1i |
|
39 |
|
rpsup |
|
40 |
39
|
a1i |
|
41 |
38 40
|
rlimdm |
|
42 |
33 41
|
mpbii |
|
43 |
42
|
adantr |
|
44 |
|
simprl |
|
45 |
|
simprrl |
|
46 |
|
simprrr |
|
47 |
1 2 27 4 5 6 7 28 9 29 30 31 32 43 25 44 45 46
|
dchrisum0lem2 |
|
48 |
47
|
rexlimdvaa |
|
49 |
48
|
exlimdv |
|
50 |
26 49
|
mpd |
|
51 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dchrisum0lem1 |
|
52 |
15 17 50 51
|
o1add2 |
|
53 |
|
ovexd |
|
54 |
|
fzfid |
|
55 |
|
fzfid |
|
56 |
21
|
ad2antrr |
|
57 |
|
elfzelz |
|
58 |
57
|
adantl |
|
59 |
4 1 5 2 56 58
|
dchrzrhcl |
|
60 |
59
|
adantr |
|
61 |
|
elfznn |
|
62 |
61
|
adantl |
|
63 |
62
|
nnrpd |
|
64 |
|
elfznn |
|
65 |
64
|
nnrpd |
|
66 |
|
rpmulcl |
|
67 |
63 65 66
|
syl2an |
|
68 |
67
|
rpsqrtcld |
|
69 |
68
|
rpcnd |
|
70 |
68
|
rpne0d |
|
71 |
60 69 70
|
divcld |
|
72 |
55 71
|
fsumcl |
|
73 |
54 72
|
fsumcl |
|
74 |
73
|
abscld |
|
75 |
74
|
adantrr |
|
76 |
62
|
adantr |
|
77 |
76
|
nnrpd |
|
78 |
77
|
rprege0d |
|
79 |
64
|
adantl |
|
80 |
79
|
nnrpd |
|
81 |
80
|
rprege0d |
|
82 |
|
sqrtmul |
|
83 |
78 81 82
|
syl2anc |
|
84 |
83
|
oveq2d |
|
85 |
77
|
rpsqrtcld |
|
86 |
85
|
rpcnne0d |
|
87 |
80
|
rpsqrtcld |
|
88 |
87
|
rpcnne0d |
|
89 |
|
divdiv1 |
|
90 |
60 86 88 89
|
syl3anc |
|
91 |
84 90
|
eqtr4d |
|
92 |
91
|
sumeq2dv |
|
93 |
92
|
sumeq2dv |
|
94 |
93
|
adantrr |
|
95 |
|
simpr |
|
96 |
95
|
rpred |
|
97 |
|
reflcl |
|
98 |
96 97
|
syl |
|
99 |
98
|
ltp1d |
|
100 |
|
fzdisj |
|
101 |
99 100
|
syl |
|
102 |
101
|
adantrr |
|
103 |
95
|
rprege0d |
|
104 |
|
flge0nn0 |
|
105 |
|
nn0p1nn |
|
106 |
103 104 105
|
3syl |
|
107 |
|
nnuz |
|
108 |
106 107
|
eleqtrdi |
|
109 |
108
|
adantrr |
|
110 |
96
|
adantrr |
|
111 |
|
2z |
|
112 |
|
rpexpcl |
|
113 |
95 111 112
|
sylancl |
|
114 |
113
|
adantrr |
|
115 |
114
|
rpred |
|
116 |
110
|
recnd |
|
117 |
116
|
mulid1d |
|
118 |
|
simprr |
|
119 |
|
1red |
|
120 |
|
rpregt0 |
|
121 |
120
|
ad2antrl |
|
122 |
|
lemul2 |
|
123 |
119 110 121 122
|
syl3anc |
|
124 |
118 123
|
mpbid |
|
125 |
117 124
|
eqbrtrrd |
|
126 |
116
|
sqvald |
|
127 |
125 126
|
breqtrrd |
|
128 |
|
flword2 |
|
129 |
110 115 127 128
|
syl3anc |
|
130 |
|
fzsplit2 |
|
131 |
109 129 130
|
syl2anc |
|
132 |
|
fzfid |
|
133 |
92 72
|
eqeltrrd |
|
134 |
133
|
adantlrr |
|
135 |
102 131 132 134
|
fsumsplit |
|
136 |
94 135
|
eqtrd |
|
137 |
136
|
fveq2d |
|
138 |
75 137
|
eqled |
|
139 |
13 52 53 73 138
|
o1le |
|