| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
| 2 |
|
rpvmasum.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑍 ) |
| 3 |
|
rpvmasum.a |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 4 |
|
rpvmasum2.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
| 5 |
|
rpvmasum2.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
| 6 |
|
rpvmasum2.1 |
⊢ 1 = ( 0g ‘ 𝐺 ) |
| 7 |
|
rpvmasum2.w |
⊢ 𝑊 = { 𝑦 ∈ ( 𝐷 ∖ { 1 } ) ∣ Σ 𝑚 ∈ ℕ ( ( 𝑦 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) = 0 } |
| 8 |
|
dchrisum0.b |
⊢ ( 𝜑 → 𝑋 ∈ 𝑊 ) |
| 9 |
|
dchrisum0lem1.f |
⊢ 𝐹 = ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ) |
| 10 |
|
dchrisum0.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 0 [,) +∞ ) ) |
| 11 |
|
dchrisum0.s |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ⇝ 𝑆 ) |
| 12 |
|
dchrisum0.1 |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑆 ) ) ≤ ( 𝐶 / ( √ ‘ 𝑦 ) ) ) |
| 13 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 14 |
|
sumex |
⊢ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) ∈ V |
| 15 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) ∈ V ) |
| 16 |
|
sumex |
⊢ Σ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) ∈ V |
| 17 |
16
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) ∈ V ) |
| 18 |
7
|
ssrab3 |
⊢ 𝑊 ⊆ ( 𝐷 ∖ { 1 } ) |
| 19 |
|
difss |
⊢ ( 𝐷 ∖ { 1 } ) ⊆ 𝐷 |
| 20 |
18 19
|
sstri |
⊢ 𝑊 ⊆ 𝐷 |
| 21 |
20 8
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
| 22 |
18 8
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐷 ∖ { 1 } ) ) |
| 23 |
|
eldifsni |
⊢ ( 𝑋 ∈ ( 𝐷 ∖ { 1 } ) → 𝑋 ≠ 1 ) |
| 24 |
22 23
|
syl |
⊢ ( 𝜑 → 𝑋 ≠ 1 ) |
| 25 |
|
eqid |
⊢ ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) = ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) |
| 26 |
1 2 3 4 5 6 21 24 25
|
dchrmusumlema |
⊢ ( 𝜑 → ∃ 𝑡 ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / 𝑦 ) ) ) |
| 27 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( 0 [,) +∞ ) ∧ ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / 𝑦 ) ) ) ) → 𝑁 ∈ ℕ ) |
| 28 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( 0 [,) +∞ ) ∧ ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / 𝑦 ) ) ) ) → 𝑋 ∈ 𝑊 ) |
| 29 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( 0 [,) +∞ ) ∧ ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / 𝑦 ) ) ) ) → 𝐶 ∈ ( 0 [,) +∞ ) ) |
| 30 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( 0 [,) +∞ ) ∧ ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / 𝑦 ) ) ) ) → seq 1 ( + , 𝐹 ) ⇝ 𝑆 ) |
| 31 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( 0 [,) +∞ ) ∧ ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / 𝑦 ) ) ) ) → ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑆 ) ) ≤ ( 𝐶 / ( √ ‘ 𝑦 ) ) ) |
| 32 |
|
eqid |
⊢ ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( 1 / ( √ ‘ 𝑑 ) ) − ( 2 · ( √ ‘ 𝑦 ) ) ) ) = ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( 1 / ( √ ‘ 𝑑 ) ) − ( 2 · ( √ ‘ 𝑦 ) ) ) ) |
| 33 |
32
|
divsqrsum |
⊢ ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( 1 / ( √ ‘ 𝑑 ) ) − ( 2 · ( √ ‘ 𝑦 ) ) ) ) ∈ dom ⇝𝑟 |
| 34 |
32
|
divsqrsumf |
⊢ ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( 1 / ( √ ‘ 𝑑 ) ) − ( 2 · ( √ ‘ 𝑦 ) ) ) ) : ℝ+ ⟶ ℝ |
| 35 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 36 |
|
fss |
⊢ ( ( ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( 1 / ( √ ‘ 𝑑 ) ) − ( 2 · ( √ ‘ 𝑦 ) ) ) ) : ℝ+ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( 1 / ( √ ‘ 𝑑 ) ) − ( 2 · ( √ ‘ 𝑦 ) ) ) ) : ℝ+ ⟶ ℂ ) |
| 37 |
34 35 36
|
mp2an |
⊢ ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( 1 / ( √ ‘ 𝑑 ) ) − ( 2 · ( √ ‘ 𝑦 ) ) ) ) : ℝ+ ⟶ ℂ |
| 38 |
37
|
a1i |
⊢ ( 𝜑 → ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( 1 / ( √ ‘ 𝑑 ) ) − ( 2 · ( √ ‘ 𝑦 ) ) ) ) : ℝ+ ⟶ ℂ ) |
| 39 |
|
rpsup |
⊢ sup ( ℝ+ , ℝ* , < ) = +∞ |
| 40 |
39
|
a1i |
⊢ ( 𝜑 → sup ( ℝ+ , ℝ* , < ) = +∞ ) |
| 41 |
38 40
|
rlimdm |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( 1 / ( √ ‘ 𝑑 ) ) − ( 2 · ( √ ‘ 𝑦 ) ) ) ) ∈ dom ⇝𝑟 ↔ ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( 1 / ( √ ‘ 𝑑 ) ) − ( 2 · ( √ ‘ 𝑦 ) ) ) ) ⇝𝑟 ( ⇝𝑟 ‘ ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( 1 / ( √ ‘ 𝑑 ) ) − ( 2 · ( √ ‘ 𝑦 ) ) ) ) ) ) ) |
| 42 |
33 41
|
mpbii |
⊢ ( 𝜑 → ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( 1 / ( √ ‘ 𝑑 ) ) − ( 2 · ( √ ‘ 𝑦 ) ) ) ) ⇝𝑟 ( ⇝𝑟 ‘ ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( 1 / ( √ ‘ 𝑑 ) ) − ( 2 · ( √ ‘ 𝑦 ) ) ) ) ) ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( 0 [,) +∞ ) ∧ ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / 𝑦 ) ) ) ) → ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( 1 / ( √ ‘ 𝑑 ) ) − ( 2 · ( √ ‘ 𝑦 ) ) ) ) ⇝𝑟 ( ⇝𝑟 ‘ ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( 1 / ( √ ‘ 𝑑 ) ) − ( 2 · ( √ ‘ 𝑦 ) ) ) ) ) ) |
| 44 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( 0 [,) +∞ ) ∧ ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / 𝑦 ) ) ) ) → 𝑐 ∈ ( 0 [,) +∞ ) ) |
| 45 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( 0 [,) +∞ ) ∧ ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / 𝑦 ) ) ) ) → seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) ) ⇝ 𝑡 ) |
| 46 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( 0 [,) +∞ ) ∧ ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / 𝑦 ) ) ) ) → ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / 𝑦 ) ) |
| 47 |
1 2 27 4 5 6 7 28 9 29 30 31 32 43 25 44 45 46
|
dchrisum0lem2 |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( 0 [,) +∞ ) ∧ ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / 𝑦 ) ) ) ) → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) ) ∈ 𝑂(1) ) |
| 48 |
47
|
rexlimdvaa |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / 𝑦 ) ) → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) ) ∈ 𝑂(1) ) ) |
| 49 |
48
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑡 ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / 𝑦 ) ) → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) ) ∈ 𝑂(1) ) ) |
| 50 |
26 49
|
mpd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) ) ∈ 𝑂(1) ) |
| 51 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dchrisum0lem1 |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) ) ∈ 𝑂(1) ) |
| 52 |
15 17 50 51
|
o1add2 |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) + Σ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) ) ) ∈ 𝑂(1) ) |
| 53 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) + Σ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) ) ∈ V ) |
| 54 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ∈ Fin ) |
| 55 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) → ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ∈ Fin ) |
| 56 |
21
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) → 𝑋 ∈ 𝐷 ) |
| 57 |
|
elfzelz |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) → 𝑚 ∈ ℤ ) |
| 58 |
57
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) → 𝑚 ∈ ℤ ) |
| 59 |
4 1 5 2 56 58
|
dchrzrhcl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ∈ ℂ ) |
| 60 |
59
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ∈ ℂ ) |
| 61 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) → 𝑚 ∈ ℕ ) |
| 62 |
61
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) → 𝑚 ∈ ℕ ) |
| 63 |
62
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) → 𝑚 ∈ ℝ+ ) |
| 64 |
|
elfznn |
⊢ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) → 𝑑 ∈ ℕ ) |
| 65 |
64
|
nnrpd |
⊢ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) → 𝑑 ∈ ℝ+ ) |
| 66 |
|
rpmulcl |
⊢ ( ( 𝑚 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) → ( 𝑚 · 𝑑 ) ∈ ℝ+ ) |
| 67 |
63 65 66
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ) → ( 𝑚 · 𝑑 ) ∈ ℝ+ ) |
| 68 |
67
|
rpsqrtcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ) → ( √ ‘ ( 𝑚 · 𝑑 ) ) ∈ ℝ+ ) |
| 69 |
68
|
rpcnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ) → ( √ ‘ ( 𝑚 · 𝑑 ) ) ∈ ℂ ) |
| 70 |
68
|
rpne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ) → ( √ ‘ ( 𝑚 · 𝑑 ) ) ≠ 0 ) |
| 71 |
60 69 70
|
divcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ∈ ℂ ) |
| 72 |
55 71
|
fsumcl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ∈ ℂ ) |
| 73 |
54 72
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ∈ ℂ ) |
| 74 |
73
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) ∈ ℝ ) |
| 75 |
74
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) ∈ ℝ ) |
| 76 |
62
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ) → 𝑚 ∈ ℕ ) |
| 77 |
76
|
nnrpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ) → 𝑚 ∈ ℝ+ ) |
| 78 |
77
|
rprege0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ) → ( 𝑚 ∈ ℝ ∧ 0 ≤ 𝑚 ) ) |
| 79 |
64
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ) → 𝑑 ∈ ℕ ) |
| 80 |
79
|
nnrpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ) → 𝑑 ∈ ℝ+ ) |
| 81 |
80
|
rprege0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ) → ( 𝑑 ∈ ℝ ∧ 0 ≤ 𝑑 ) ) |
| 82 |
|
sqrtmul |
⊢ ( ( ( 𝑚 ∈ ℝ ∧ 0 ≤ 𝑚 ) ∧ ( 𝑑 ∈ ℝ ∧ 0 ≤ 𝑑 ) ) → ( √ ‘ ( 𝑚 · 𝑑 ) ) = ( ( √ ‘ 𝑚 ) · ( √ ‘ 𝑑 ) ) ) |
| 83 |
78 81 82
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ) → ( √ ‘ ( 𝑚 · 𝑑 ) ) = ( ( √ ‘ 𝑚 ) · ( √ ‘ 𝑑 ) ) ) |
| 84 |
83
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( ( √ ‘ 𝑚 ) · ( √ ‘ 𝑑 ) ) ) ) |
| 85 |
77
|
rpsqrtcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ) → ( √ ‘ 𝑚 ) ∈ ℝ+ ) |
| 86 |
85
|
rpcnne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ) → ( ( √ ‘ 𝑚 ) ∈ ℂ ∧ ( √ ‘ 𝑚 ) ≠ 0 ) ) |
| 87 |
80
|
rpsqrtcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ) → ( √ ‘ 𝑑 ) ∈ ℝ+ ) |
| 88 |
87
|
rpcnne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ) → ( ( √ ‘ 𝑑 ) ∈ ℂ ∧ ( √ ‘ 𝑑 ) ≠ 0 ) ) |
| 89 |
|
divdiv1 |
⊢ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ∈ ℂ ∧ ( ( √ ‘ 𝑚 ) ∈ ℂ ∧ ( √ ‘ 𝑚 ) ≠ 0 ) ∧ ( ( √ ‘ 𝑑 ) ∈ ℂ ∧ ( √ ‘ 𝑑 ) ≠ 0 ) ) → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( ( √ ‘ 𝑚 ) · ( √ ‘ 𝑑 ) ) ) ) |
| 90 |
60 86 88 89
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ) → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( ( √ ‘ 𝑚 ) · ( √ ‘ 𝑑 ) ) ) ) |
| 91 |
84 90
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) = ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) ) |
| 92 |
91
|
sumeq2dv |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) ) |
| 93 |
92
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) ) |
| 94 |
93
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) ) |
| 95 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) |
| 96 |
95
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ ) |
| 97 |
|
reflcl |
⊢ ( 𝑥 ∈ ℝ → ( ⌊ ‘ 𝑥 ) ∈ ℝ ) |
| 98 |
96 97
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ⌊ ‘ 𝑥 ) ∈ ℝ ) |
| 99 |
98
|
ltp1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ⌊ ‘ 𝑥 ) < ( ( ⌊ ‘ 𝑥 ) + 1 ) ) |
| 100 |
|
fzdisj |
⊢ ( ( ⌊ ‘ 𝑥 ) < ( ( ⌊ ‘ 𝑥 ) + 1 ) → ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) = ∅ ) |
| 101 |
99 100
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) = ∅ ) |
| 102 |
101
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) = ∅ ) |
| 103 |
95
|
rprege0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
| 104 |
|
flge0nn0 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( ⌊ ‘ 𝑥 ) ∈ ℕ0 ) |
| 105 |
|
nn0p1nn |
⊢ ( ( ⌊ ‘ 𝑥 ) ∈ ℕ0 → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℕ ) |
| 106 |
103 104 105
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℕ ) |
| 107 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 108 |
106 107
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 109 |
108
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 110 |
96
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ ) |
| 111 |
|
2z |
⊢ 2 ∈ ℤ |
| 112 |
|
rpexpcl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 2 ∈ ℤ ) → ( 𝑥 ↑ 2 ) ∈ ℝ+ ) |
| 113 |
95 111 112
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ↑ 2 ) ∈ ℝ+ ) |
| 114 |
113
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( 𝑥 ↑ 2 ) ∈ ℝ+ ) |
| 115 |
114
|
rpred |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( 𝑥 ↑ 2 ) ∈ ℝ ) |
| 116 |
110
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 𝑥 ∈ ℂ ) |
| 117 |
116
|
mulridd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( 𝑥 · 1 ) = 𝑥 ) |
| 118 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 1 ≤ 𝑥 ) |
| 119 |
|
1red |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 1 ∈ ℝ ) |
| 120 |
|
rpregt0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) |
| 121 |
120
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) |
| 122 |
|
lemul2 |
⊢ ( ( 1 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) → ( 1 ≤ 𝑥 ↔ ( 𝑥 · 1 ) ≤ ( 𝑥 · 𝑥 ) ) ) |
| 123 |
119 110 121 122
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( 1 ≤ 𝑥 ↔ ( 𝑥 · 1 ) ≤ ( 𝑥 · 𝑥 ) ) ) |
| 124 |
118 123
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( 𝑥 · 1 ) ≤ ( 𝑥 · 𝑥 ) ) |
| 125 |
117 124
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 𝑥 ≤ ( 𝑥 · 𝑥 ) ) |
| 126 |
116
|
sqvald |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( 𝑥 ↑ 2 ) = ( 𝑥 · 𝑥 ) ) |
| 127 |
125 126
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 𝑥 ≤ ( 𝑥 ↑ 2 ) ) |
| 128 |
|
flword2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( 𝑥 ↑ 2 ) ∈ ℝ ∧ 𝑥 ≤ ( 𝑥 ↑ 2 ) ) → ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑥 ) ) ) |
| 129 |
110 115 127 128
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑥 ) ) ) |
| 130 |
|
fzsplit2 |
⊢ ( ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑥 ) ) ) → ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) = ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∪ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) ) |
| 131 |
109 129 130
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) = ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∪ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) ) |
| 132 |
|
fzfid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ∈ Fin ) |
| 133 |
92 72
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) ∈ ℂ ) |
| 134 |
133
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) ∈ ℂ ) |
| 135 |
102 131 132 134
|
fsumsplit |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) + Σ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) ) ) |
| 136 |
94 135
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) + Σ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) ) ) |
| 137 |
136
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) = ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) + Σ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) ) ) ) |
| 138 |
75 137
|
eqled |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) ≤ ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) + Σ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) / ( √ ‘ 𝑑 ) ) ) ) ) |
| 139 |
13 52 53 73 138
|
o1le |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) ∈ 𝑂(1) ) |