Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|- Z = ( Z/nZ ` N ) |
2 |
|
rpvmasum.l |
|- L = ( ZRHom ` Z ) |
3 |
|
rpvmasum.a |
|- ( ph -> N e. NN ) |
4 |
|
rpvmasum2.g |
|- G = ( DChr ` N ) |
5 |
|
rpvmasum2.d |
|- D = ( Base ` G ) |
6 |
|
rpvmasum2.1 |
|- .1. = ( 0g ` G ) |
7 |
|
rpvmasum2.w |
|- W = { y e. ( D \ { .1. } ) | sum_ m e. NN ( ( y ` ( L ` m ) ) / m ) = 0 } |
8 |
|
dchrisum0.b |
|- ( ph -> X e. W ) |
9 |
|
dchrisum0lem1.f |
|- F = ( a e. NN |-> ( ( X ` ( L ` a ) ) / ( sqrt ` a ) ) ) |
10 |
|
dchrisum0.c |
|- ( ph -> C e. ( 0 [,) +oo ) ) |
11 |
|
dchrisum0.s |
|- ( ph -> seq 1 ( + , F ) ~~> S ) |
12 |
|
dchrisum0.1 |
|- ( ph -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` y ) ) - S ) ) <_ ( C / ( sqrt ` y ) ) ) |
13 |
|
1red |
|- ( ph -> 1 e. RR ) |
14 |
|
sumex |
|- sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) e. _V |
15 |
14
|
a1i |
|- ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) e. _V ) |
16 |
|
sumex |
|- sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( x ^ 2 ) ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) e. _V |
17 |
16
|
a1i |
|- ( ( ph /\ x e. RR+ ) -> sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( x ^ 2 ) ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) e. _V ) |
18 |
7
|
ssrab3 |
|- W C_ ( D \ { .1. } ) |
19 |
|
difss |
|- ( D \ { .1. } ) C_ D |
20 |
18 19
|
sstri |
|- W C_ D |
21 |
20 8
|
sselid |
|- ( ph -> X e. D ) |
22 |
18 8
|
sselid |
|- ( ph -> X e. ( D \ { .1. } ) ) |
23 |
|
eldifsni |
|- ( X e. ( D \ { .1. } ) -> X =/= .1. ) |
24 |
22 23
|
syl |
|- ( ph -> X =/= .1. ) |
25 |
|
eqid |
|- ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) = ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) |
26 |
1 2 3 4 5 6 21 24 25
|
dchrmusumlema |
|- ( ph -> E. t E. c e. ( 0 [,) +oo ) ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) |
27 |
3
|
adantr |
|- ( ( ph /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> N e. NN ) |
28 |
8
|
adantr |
|- ( ( ph /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> X e. W ) |
29 |
10
|
adantr |
|- ( ( ph /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> C e. ( 0 [,) +oo ) ) |
30 |
11
|
adantr |
|- ( ( ph /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> seq 1 ( + , F ) ~~> S ) |
31 |
12
|
adantr |
|- ( ( ph /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` y ) ) - S ) ) <_ ( C / ( sqrt ` y ) ) ) |
32 |
|
eqid |
|- ( y e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` y ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` y ) ) ) ) = ( y e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` y ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` y ) ) ) ) |
33 |
32
|
divsqrsum |
|- ( y e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` y ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` y ) ) ) ) e. dom ~~>r |
34 |
32
|
divsqrsumf |
|- ( y e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` y ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` y ) ) ) ) : RR+ --> RR |
35 |
|
ax-resscn |
|- RR C_ CC |
36 |
|
fss |
|- ( ( ( y e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` y ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` y ) ) ) ) : RR+ --> RR /\ RR C_ CC ) -> ( y e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` y ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` y ) ) ) ) : RR+ --> CC ) |
37 |
34 35 36
|
mp2an |
|- ( y e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` y ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` y ) ) ) ) : RR+ --> CC |
38 |
37
|
a1i |
|- ( ph -> ( y e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` y ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` y ) ) ) ) : RR+ --> CC ) |
39 |
|
rpsup |
|- sup ( RR+ , RR* , < ) = +oo |
40 |
39
|
a1i |
|- ( ph -> sup ( RR+ , RR* , < ) = +oo ) |
41 |
38 40
|
rlimdm |
|- ( ph -> ( ( y e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` y ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` y ) ) ) ) e. dom ~~>r <-> ( y e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` y ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` y ) ) ) ) ~~>r ( ~~>r ` ( y e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` y ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` y ) ) ) ) ) ) ) |
42 |
33 41
|
mpbii |
|- ( ph -> ( y e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` y ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` y ) ) ) ) ~~>r ( ~~>r ` ( y e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` y ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` y ) ) ) ) ) ) |
43 |
42
|
adantr |
|- ( ( ph /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> ( y e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` y ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` y ) ) ) ) ~~>r ( ~~>r ` ( y e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` y ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` y ) ) ) ) ) ) |
44 |
|
simprl |
|- ( ( ph /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> c e. ( 0 [,) +oo ) ) |
45 |
|
simprrl |
|- ( ( ph /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> t ) |
46 |
|
simprrr |
|- ( ( ph /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) |
47 |
1 2 27 4 5 6 7 28 9 29 30 31 32 43 25 44 45 46
|
dchrisum0lem2 |
|- ( ( ph /\ ( c e. ( 0 [,) +oo ) /\ ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) ) ) -> ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) e. O(1) ) |
48 |
47
|
rexlimdvaa |
|- ( ph -> ( E. c e. ( 0 [,) +oo ) ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) -> ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) e. O(1) ) ) |
49 |
48
|
exlimdv |
|- ( ph -> ( E. t E. c e. ( 0 [,) +oo ) ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ~~> t /\ A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) ) ` ( |_ ` y ) ) - t ) ) <_ ( c / y ) ) -> ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) e. O(1) ) ) |
50 |
26 49
|
mpd |
|- ( ph -> ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) e. O(1) ) |
51 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dchrisum0lem1 |
|- ( ph -> ( x e. RR+ |-> sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( x ^ 2 ) ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) e. O(1) ) |
52 |
15 17 50 51
|
o1add2 |
|- ( ph -> ( x e. RR+ |-> ( sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) + sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( x ^ 2 ) ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) ) e. O(1) ) |
53 |
|
ovexd |
|- ( ( ph /\ x e. RR+ ) -> ( sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) + sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( x ^ 2 ) ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) e. _V ) |
54 |
|
fzfid |
|- ( ( ph /\ x e. RR+ ) -> ( 1 ... ( |_ ` ( x ^ 2 ) ) ) e. Fin ) |
55 |
|
fzfid |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) -> ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) e. Fin ) |
56 |
21
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) -> X e. D ) |
57 |
|
elfzelz |
|- ( m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) -> m e. ZZ ) |
58 |
57
|
adantl |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) -> m e. ZZ ) |
59 |
4 1 5 2 56 58
|
dchrzrhcl |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) -> ( X ` ( L ` m ) ) e. CC ) |
60 |
59
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( X ` ( L ` m ) ) e. CC ) |
61 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) -> m e. NN ) |
62 |
61
|
adantl |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) -> m e. NN ) |
63 |
62
|
nnrpd |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) -> m e. RR+ ) |
64 |
|
elfznn |
|- ( d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) -> d e. NN ) |
65 |
64
|
nnrpd |
|- ( d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) -> d e. RR+ ) |
66 |
|
rpmulcl |
|- ( ( m e. RR+ /\ d e. RR+ ) -> ( m x. d ) e. RR+ ) |
67 |
63 65 66
|
syl2an |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( m x. d ) e. RR+ ) |
68 |
67
|
rpsqrtcld |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( sqrt ` ( m x. d ) ) e. RR+ ) |
69 |
68
|
rpcnd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( sqrt ` ( m x. d ) ) e. CC ) |
70 |
68
|
rpne0d |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( sqrt ` ( m x. d ) ) =/= 0 ) |
71 |
60 69 70
|
divcld |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( ( X ` ( L ` m ) ) / ( sqrt ` ( m x. d ) ) ) e. CC ) |
72 |
55 71
|
fsumcl |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) -> sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` ( m x. d ) ) ) e. CC ) |
73 |
54 72
|
fsumcl |
|- ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` ( m x. d ) ) ) e. CC ) |
74 |
73
|
abscld |
|- ( ( ph /\ x e. RR+ ) -> ( abs ` sum_ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` ( m x. d ) ) ) ) e. RR ) |
75 |
74
|
adantrr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` sum_ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` ( m x. d ) ) ) ) e. RR ) |
76 |
62
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> m e. NN ) |
77 |
76
|
nnrpd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> m e. RR+ ) |
78 |
77
|
rprege0d |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( m e. RR /\ 0 <_ m ) ) |
79 |
64
|
adantl |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> d e. NN ) |
80 |
79
|
nnrpd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> d e. RR+ ) |
81 |
80
|
rprege0d |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( d e. RR /\ 0 <_ d ) ) |
82 |
|
sqrtmul |
|- ( ( ( m e. RR /\ 0 <_ m ) /\ ( d e. RR /\ 0 <_ d ) ) -> ( sqrt ` ( m x. d ) ) = ( ( sqrt ` m ) x. ( sqrt ` d ) ) ) |
83 |
78 81 82
|
syl2anc |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( sqrt ` ( m x. d ) ) = ( ( sqrt ` m ) x. ( sqrt ` d ) ) ) |
84 |
83
|
oveq2d |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( ( X ` ( L ` m ) ) / ( sqrt ` ( m x. d ) ) ) = ( ( X ` ( L ` m ) ) / ( ( sqrt ` m ) x. ( sqrt ` d ) ) ) ) |
85 |
77
|
rpsqrtcld |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( sqrt ` m ) e. RR+ ) |
86 |
85
|
rpcnne0d |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( ( sqrt ` m ) e. CC /\ ( sqrt ` m ) =/= 0 ) ) |
87 |
80
|
rpsqrtcld |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( sqrt ` d ) e. RR+ ) |
88 |
87
|
rpcnne0d |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( ( sqrt ` d ) e. CC /\ ( sqrt ` d ) =/= 0 ) ) |
89 |
|
divdiv1 |
|- ( ( ( X ` ( L ` m ) ) e. CC /\ ( ( sqrt ` m ) e. CC /\ ( sqrt ` m ) =/= 0 ) /\ ( ( sqrt ` d ) e. CC /\ ( sqrt ` d ) =/= 0 ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) = ( ( X ` ( L ` m ) ) / ( ( sqrt ` m ) x. ( sqrt ` d ) ) ) ) |
90 |
60 86 88 89
|
syl3anc |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) = ( ( X ` ( L ` m ) ) / ( ( sqrt ` m ) x. ( sqrt ` d ) ) ) ) |
91 |
84 90
|
eqtr4d |
|- ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( ( X ` ( L ` m ) ) / ( sqrt ` ( m x. d ) ) ) = ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) |
92 |
91
|
sumeq2dv |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) -> sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` ( m x. d ) ) ) = sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) |
93 |
92
|
sumeq2dv |
|- ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` ( m x. d ) ) ) = sum_ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) |
94 |
93
|
adantrr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` ( m x. d ) ) ) = sum_ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) |
95 |
|
simpr |
|- ( ( ph /\ x e. RR+ ) -> x e. RR+ ) |
96 |
95
|
rpred |
|- ( ( ph /\ x e. RR+ ) -> x e. RR ) |
97 |
|
reflcl |
|- ( x e. RR -> ( |_ ` x ) e. RR ) |
98 |
96 97
|
syl |
|- ( ( ph /\ x e. RR+ ) -> ( |_ ` x ) e. RR ) |
99 |
98
|
ltp1d |
|- ( ( ph /\ x e. RR+ ) -> ( |_ ` x ) < ( ( |_ ` x ) + 1 ) ) |
100 |
|
fzdisj |
|- ( ( |_ ` x ) < ( ( |_ ` x ) + 1 ) -> ( ( 1 ... ( |_ ` x ) ) i^i ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( x ^ 2 ) ) ) ) = (/) ) |
101 |
99 100
|
syl |
|- ( ( ph /\ x e. RR+ ) -> ( ( 1 ... ( |_ ` x ) ) i^i ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( x ^ 2 ) ) ) ) = (/) ) |
102 |
101
|
adantrr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( 1 ... ( |_ ` x ) ) i^i ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( x ^ 2 ) ) ) ) = (/) ) |
103 |
95
|
rprege0d |
|- ( ( ph /\ x e. RR+ ) -> ( x e. RR /\ 0 <_ x ) ) |
104 |
|
flge0nn0 |
|- ( ( x e. RR /\ 0 <_ x ) -> ( |_ ` x ) e. NN0 ) |
105 |
|
nn0p1nn |
|- ( ( |_ ` x ) e. NN0 -> ( ( |_ ` x ) + 1 ) e. NN ) |
106 |
103 104 105
|
3syl |
|- ( ( ph /\ x e. RR+ ) -> ( ( |_ ` x ) + 1 ) e. NN ) |
107 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
108 |
106 107
|
eleqtrdi |
|- ( ( ph /\ x e. RR+ ) -> ( ( |_ ` x ) + 1 ) e. ( ZZ>= ` 1 ) ) |
109 |
108
|
adantrr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( |_ ` x ) + 1 ) e. ( ZZ>= ` 1 ) ) |
110 |
96
|
adantrr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> x e. RR ) |
111 |
|
2z |
|- 2 e. ZZ |
112 |
|
rpexpcl |
|- ( ( x e. RR+ /\ 2 e. ZZ ) -> ( x ^ 2 ) e. RR+ ) |
113 |
95 111 112
|
sylancl |
|- ( ( ph /\ x e. RR+ ) -> ( x ^ 2 ) e. RR+ ) |
114 |
113
|
adantrr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( x ^ 2 ) e. RR+ ) |
115 |
114
|
rpred |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( x ^ 2 ) e. RR ) |
116 |
110
|
recnd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> x e. CC ) |
117 |
116
|
mulid1d |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( x x. 1 ) = x ) |
118 |
|
simprr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> 1 <_ x ) |
119 |
|
1red |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> 1 e. RR ) |
120 |
|
rpregt0 |
|- ( x e. RR+ -> ( x e. RR /\ 0 < x ) ) |
121 |
120
|
ad2antrl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( x e. RR /\ 0 < x ) ) |
122 |
|
lemul2 |
|- ( ( 1 e. RR /\ x e. RR /\ ( x e. RR /\ 0 < x ) ) -> ( 1 <_ x <-> ( x x. 1 ) <_ ( x x. x ) ) ) |
123 |
119 110 121 122
|
syl3anc |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( 1 <_ x <-> ( x x. 1 ) <_ ( x x. x ) ) ) |
124 |
118 123
|
mpbid |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( x x. 1 ) <_ ( x x. x ) ) |
125 |
117 124
|
eqbrtrrd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> x <_ ( x x. x ) ) |
126 |
116
|
sqvald |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( x ^ 2 ) = ( x x. x ) ) |
127 |
125 126
|
breqtrrd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> x <_ ( x ^ 2 ) ) |
128 |
|
flword2 |
|- ( ( x e. RR /\ ( x ^ 2 ) e. RR /\ x <_ ( x ^ 2 ) ) -> ( |_ ` ( x ^ 2 ) ) e. ( ZZ>= ` ( |_ ` x ) ) ) |
129 |
110 115 127 128
|
syl3anc |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( |_ ` ( x ^ 2 ) ) e. ( ZZ>= ` ( |_ ` x ) ) ) |
130 |
|
fzsplit2 |
|- ( ( ( ( |_ ` x ) + 1 ) e. ( ZZ>= ` 1 ) /\ ( |_ ` ( x ^ 2 ) ) e. ( ZZ>= ` ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( x ^ 2 ) ) ) = ( ( 1 ... ( |_ ` x ) ) u. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( x ^ 2 ) ) ) ) ) |
131 |
109 129 130
|
syl2anc |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( 1 ... ( |_ ` ( x ^ 2 ) ) ) = ( ( 1 ... ( |_ ` x ) ) u. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( x ^ 2 ) ) ) ) ) |
132 |
|
fzfid |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( 1 ... ( |_ ` ( x ^ 2 ) ) ) e. Fin ) |
133 |
92 72
|
eqeltrrd |
|- ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) -> sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) e. CC ) |
134 |
133
|
adantlrr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) ) -> sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) e. CC ) |
135 |
102 131 132 134
|
fsumsplit |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) = ( sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) + sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( x ^ 2 ) ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) ) |
136 |
94 135
|
eqtrd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` ( m x. d ) ) ) = ( sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) + sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( x ^ 2 ) ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) ) |
137 |
136
|
fveq2d |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` sum_ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` ( m x. d ) ) ) ) = ( abs ` ( sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) + sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( x ^ 2 ) ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) ) ) |
138 |
75 137
|
eqled |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` sum_ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` ( m x. d ) ) ) ) <_ ( abs ` ( sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) + sum_ m e. ( ( ( |_ ` x ) + 1 ) ... ( |_ ` ( x ^ 2 ) ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) ) ) |
139 |
13 52 53 73 138
|
o1le |
|- ( ph -> ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` ( x ^ 2 ) ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` ( m x. d ) ) ) ) e. O(1) ) |