| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpvmasum.z |  |-  Z = ( Z/nZ ` N ) | 
						
							| 2 |  | rpvmasum.l |  |-  L = ( ZRHom ` Z ) | 
						
							| 3 |  | rpvmasum.a |  |-  ( ph -> N e. NN ) | 
						
							| 4 |  | rpvmasum2.g |  |-  G = ( DChr ` N ) | 
						
							| 5 |  | rpvmasum2.d |  |-  D = ( Base ` G ) | 
						
							| 6 |  | rpvmasum2.1 |  |-  .1. = ( 0g ` G ) | 
						
							| 7 |  | rpvmasum2.w |  |-  W = { y e. ( D \ { .1. } ) | sum_ m e. NN ( ( y ` ( L ` m ) ) / m ) = 0 } | 
						
							| 8 |  | dchrisum0.b |  |-  ( ph -> X e. W ) | 
						
							| 9 |  | dchrisum0lem1.f |  |-  F = ( a e. NN |-> ( ( X ` ( L ` a ) ) / ( sqrt ` a ) ) ) | 
						
							| 10 |  | dchrisum0.c |  |-  ( ph -> C e. ( 0 [,) +oo ) ) | 
						
							| 11 |  | dchrisum0.s |  |-  ( ph -> seq 1 ( + , F ) ~~> S ) | 
						
							| 12 |  | dchrisum0.1 |  |-  ( ph -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` y ) ) - S ) ) <_ ( C / ( sqrt ` y ) ) ) | 
						
							| 13 |  | dchrisum0lem2.h |  |-  H = ( y e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` y ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` y ) ) ) ) | 
						
							| 14 |  | dchrisum0lem2.u |  |-  ( ph -> H ~~>r U ) | 
						
							| 15 |  | dchrisum0lem2.k |  |-  K = ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) | 
						
							| 16 |  | dchrisum0lem2.e |  |-  ( ph -> E e. ( 0 [,) +oo ) ) | 
						
							| 17 |  | dchrisum0lem2.t |  |-  ( ph -> seq 1 ( + , K ) ~~> T ) | 
						
							| 18 |  | dchrisum0lem2.3 |  |-  ( ph -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , K ) ` ( |_ ` y ) ) - T ) ) <_ ( E / y ) ) | 
						
							| 19 |  | 2cnd |  |-  ( ( ph /\ x e. RR+ ) -> 2 e. CC ) | 
						
							| 20 |  | rpcn |  |-  ( x e. RR+ -> x e. CC ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ph /\ x e. RR+ ) -> x e. CC ) | 
						
							| 22 |  | fzfid |  |-  ( ( ph /\ x e. RR+ ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) | 
						
							| 23 | 7 | ssrab3 |  |-  W C_ ( D \ { .1. } ) | 
						
							| 24 | 23 8 | sselid |  |-  ( ph -> X e. ( D \ { .1. } ) ) | 
						
							| 25 | 24 | eldifad |  |-  ( ph -> X e. D ) | 
						
							| 26 | 25 | ad2antrr |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> X e. D ) | 
						
							| 27 |  | elfzelz |  |-  ( m e. ( 1 ... ( |_ ` x ) ) -> m e. ZZ ) | 
						
							| 28 | 27 | adantl |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> m e. ZZ ) | 
						
							| 29 | 4 1 5 2 26 28 | dchrzrhcl |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( X ` ( L ` m ) ) e. CC ) | 
						
							| 30 |  | elfznn |  |-  ( m e. ( 1 ... ( |_ ` x ) ) -> m e. NN ) | 
						
							| 31 | 30 | nnrpd |  |-  ( m e. ( 1 ... ( |_ ` x ) ) -> m e. RR+ ) | 
						
							| 32 | 31 | adantl |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> m e. RR+ ) | 
						
							| 33 | 32 | rpcnd |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> m e. CC ) | 
						
							| 34 | 32 | rpne0d |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> m =/= 0 ) | 
						
							| 35 | 29 33 34 | divcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( X ` ( L ` m ) ) / m ) e. CC ) | 
						
							| 36 | 22 35 | fsumcl |  |-  ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) e. CC ) | 
						
							| 37 | 21 36 | mulcld |  |-  ( ( ph /\ x e. RR+ ) -> ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) e. CC ) | 
						
							| 38 |  | rpssre |  |-  RR+ C_ RR | 
						
							| 39 |  | 2cn |  |-  2 e. CC | 
						
							| 40 |  | o1const |  |-  ( ( RR+ C_ RR /\ 2 e. CC ) -> ( x e. RR+ |-> 2 ) e. O(1) ) | 
						
							| 41 | 38 39 40 | mp2an |  |-  ( x e. RR+ |-> 2 ) e. O(1) | 
						
							| 42 | 41 | a1i |  |-  ( ph -> ( x e. RR+ |-> 2 ) e. O(1) ) | 
						
							| 43 | 38 | a1i |  |-  ( ph -> RR+ C_ RR ) | 
						
							| 44 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 45 |  | elrege0 |  |-  ( E e. ( 0 [,) +oo ) <-> ( E e. RR /\ 0 <_ E ) ) | 
						
							| 46 | 45 | simplbi |  |-  ( E e. ( 0 [,) +oo ) -> E e. RR ) | 
						
							| 47 | 16 46 | syl |  |-  ( ph -> E e. RR ) | 
						
							| 48 | 21 36 | absmuld |  |-  ( ( ph /\ x e. RR+ ) -> ( abs ` ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) = ( ( abs ` x ) x. ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) ) | 
						
							| 49 |  | rprege0 |  |-  ( x e. RR+ -> ( x e. RR /\ 0 <_ x ) ) | 
						
							| 50 | 49 | adantl |  |-  ( ( ph /\ x e. RR+ ) -> ( x e. RR /\ 0 <_ x ) ) | 
						
							| 51 |  | absid |  |-  ( ( x e. RR /\ 0 <_ x ) -> ( abs ` x ) = x ) | 
						
							| 52 | 50 51 | syl |  |-  ( ( ph /\ x e. RR+ ) -> ( abs ` x ) = x ) | 
						
							| 53 | 52 | oveq1d |  |-  ( ( ph /\ x e. RR+ ) -> ( ( abs ` x ) x. ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) = ( x x. ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) ) | 
						
							| 54 | 48 53 | eqtrd |  |-  ( ( ph /\ x e. RR+ ) -> ( abs ` ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) = ( x x. ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) ) | 
						
							| 55 | 54 | adantrr |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) = ( x x. ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) ) | 
						
							| 56 | 36 | adantrr |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) e. CC ) | 
						
							| 57 | 56 | subid1d |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) - 0 ) = sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) | 
						
							| 58 | 30 | adantl |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> m e. NN ) | 
						
							| 59 |  | 2fveq3 |  |-  ( a = m -> ( X ` ( L ` a ) ) = ( X ` ( L ` m ) ) ) | 
						
							| 60 |  | id |  |-  ( a = m -> a = m ) | 
						
							| 61 | 59 60 | oveq12d |  |-  ( a = m -> ( ( X ` ( L ` a ) ) / a ) = ( ( X ` ( L ` m ) ) / m ) ) | 
						
							| 62 |  | ovex |  |-  ( ( X ` ( L ` a ) ) / a ) e. _V | 
						
							| 63 | 61 15 62 | fvmpt3i |  |-  ( m e. NN -> ( K ` m ) = ( ( X ` ( L ` m ) ) / m ) ) | 
						
							| 64 | 58 63 | syl |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( K ` m ) = ( ( X ` ( L ` m ) ) / m ) ) | 
						
							| 65 | 64 | adantlrr |  |-  ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( K ` m ) = ( ( X ` ( L ` m ) ) / m ) ) | 
						
							| 66 |  | rpregt0 |  |-  ( x e. RR+ -> ( x e. RR /\ 0 < x ) ) | 
						
							| 67 | 66 | ad2antrl |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( x e. RR /\ 0 < x ) ) | 
						
							| 68 | 67 | simpld |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> x e. RR ) | 
						
							| 69 |  | simprr |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> 1 <_ x ) | 
						
							| 70 |  | flge1nn |  |-  ( ( x e. RR /\ 1 <_ x ) -> ( |_ ` x ) e. NN ) | 
						
							| 71 | 68 69 70 | syl2anc |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( |_ ` x ) e. NN ) | 
						
							| 72 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 73 | 71 72 | eleqtrdi |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( |_ ` x ) e. ( ZZ>= ` 1 ) ) | 
						
							| 74 | 35 | adantlrr |  |-  ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( X ` ( L ` m ) ) / m ) e. CC ) | 
						
							| 75 | 65 73 74 | fsumser |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) = ( seq 1 ( + , K ) ` ( |_ ` x ) ) ) | 
						
							| 76 |  | eldifsni |  |-  ( X e. ( D \ { .1. } ) -> X =/= .1. ) | 
						
							| 77 | 24 76 | syl |  |-  ( ph -> X =/= .1. ) | 
						
							| 78 | 1 2 3 4 5 6 25 77 15 16 17 18 7 | dchrvmaeq0 |  |-  ( ph -> ( X e. W <-> T = 0 ) ) | 
						
							| 79 | 8 78 | mpbid |  |-  ( ph -> T = 0 ) | 
						
							| 80 | 79 | adantr |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> T = 0 ) | 
						
							| 81 | 80 | eqcomd |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> 0 = T ) | 
						
							| 82 | 75 81 | oveq12d |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) - 0 ) = ( ( seq 1 ( + , K ) ` ( |_ ` x ) ) - T ) ) | 
						
							| 83 | 57 82 | eqtr3d |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) = ( ( seq 1 ( + , K ) ` ( |_ ` x ) ) - T ) ) | 
						
							| 84 | 83 | fveq2d |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) = ( abs ` ( ( seq 1 ( + , K ) ` ( |_ ` x ) ) - T ) ) ) | 
						
							| 85 |  | 2fveq3 |  |-  ( y = x -> ( seq 1 ( + , K ) ` ( |_ ` y ) ) = ( seq 1 ( + , K ) ` ( |_ ` x ) ) ) | 
						
							| 86 | 85 | fvoveq1d |  |-  ( y = x -> ( abs ` ( ( seq 1 ( + , K ) ` ( |_ ` y ) ) - T ) ) = ( abs ` ( ( seq 1 ( + , K ) ` ( |_ ` x ) ) - T ) ) ) | 
						
							| 87 |  | oveq2 |  |-  ( y = x -> ( E / y ) = ( E / x ) ) | 
						
							| 88 | 86 87 | breq12d |  |-  ( y = x -> ( ( abs ` ( ( seq 1 ( + , K ) ` ( |_ ` y ) ) - T ) ) <_ ( E / y ) <-> ( abs ` ( ( seq 1 ( + , K ) ` ( |_ ` x ) ) - T ) ) <_ ( E / x ) ) ) | 
						
							| 89 | 18 | adantr |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , K ) ` ( |_ ` y ) ) - T ) ) <_ ( E / y ) ) | 
						
							| 90 |  | 1re |  |-  1 e. RR | 
						
							| 91 |  | elicopnf |  |-  ( 1 e. RR -> ( x e. ( 1 [,) +oo ) <-> ( x e. RR /\ 1 <_ x ) ) ) | 
						
							| 92 | 90 91 | ax-mp |  |-  ( x e. ( 1 [,) +oo ) <-> ( x e. RR /\ 1 <_ x ) ) | 
						
							| 93 | 68 69 92 | sylanbrc |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> x e. ( 1 [,) +oo ) ) | 
						
							| 94 | 88 89 93 | rspcdva |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( ( seq 1 ( + , K ) ` ( |_ ` x ) ) - T ) ) <_ ( E / x ) ) | 
						
							| 95 | 84 94 | eqbrtrd |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) <_ ( E / x ) ) | 
						
							| 96 | 56 | abscld |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) e. RR ) | 
						
							| 97 | 47 | adantr |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> E e. RR ) | 
						
							| 98 |  | lemuldiv2 |  |-  ( ( ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) e. RR /\ E e. RR /\ ( x e. RR /\ 0 < x ) ) -> ( ( x x. ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) <_ E <-> ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) <_ ( E / x ) ) ) | 
						
							| 99 | 96 97 67 98 | syl3anc |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( x x. ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) <_ E <-> ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) <_ ( E / x ) ) ) | 
						
							| 100 | 95 99 | mpbird |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( x x. ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) <_ E ) | 
						
							| 101 | 55 100 | eqbrtrd |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) <_ E ) | 
						
							| 102 | 43 37 44 47 101 | elo1d |  |-  ( ph -> ( x e. RR+ |-> ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) e. O(1) ) | 
						
							| 103 | 19 37 42 102 | o1mul2 |  |-  ( ph -> ( x e. RR+ |-> ( 2 x. ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) ) e. O(1) ) | 
						
							| 104 |  | fzfid |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) e. Fin ) | 
						
							| 105 | 32 | rpsqrtcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` m ) e. RR+ ) | 
						
							| 106 | 105 | rpcnd |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` m ) e. CC ) | 
						
							| 107 | 105 | rpne0d |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` m ) =/= 0 ) | 
						
							| 108 | 29 106 107 | divcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) e. CC ) | 
						
							| 109 | 108 | adantr |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) e. CC ) | 
						
							| 110 |  | elfznn |  |-  ( d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) -> d e. NN ) | 
						
							| 111 | 110 | adantl |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> d e. NN ) | 
						
							| 112 | 111 | nnrpd |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> d e. RR+ ) | 
						
							| 113 | 112 | rpsqrtcld |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( sqrt ` d ) e. RR+ ) | 
						
							| 114 | 113 | rpcnd |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( sqrt ` d ) e. CC ) | 
						
							| 115 | 113 | rpne0d |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( sqrt ` d ) =/= 0 ) | 
						
							| 116 | 109 114 115 | divcld |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) e. CC ) | 
						
							| 117 | 104 116 | fsumcl |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) e. CC ) | 
						
							| 118 | 22 117 | fsumcl |  |-  ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) e. CC ) | 
						
							| 119 |  | mulcl |  |-  ( ( 2 e. CC /\ ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) e. CC ) -> ( 2 x. ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) e. CC ) | 
						
							| 120 | 39 37 119 | sylancr |  |-  ( ( ph /\ x e. RR+ ) -> ( 2 x. ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) e. CC ) | 
						
							| 121 |  | 2re |  |-  2 e. RR | 
						
							| 122 |  | simpr |  |-  ( ( ph /\ x e. RR+ ) -> x e. RR+ ) | 
						
							| 123 |  | 2z |  |-  2 e. ZZ | 
						
							| 124 |  | rpexpcl |  |-  ( ( x e. RR+ /\ 2 e. ZZ ) -> ( x ^ 2 ) e. RR+ ) | 
						
							| 125 | 122 123 124 | sylancl |  |-  ( ( ph /\ x e. RR+ ) -> ( x ^ 2 ) e. RR+ ) | 
						
							| 126 |  | rpdivcl |  |-  ( ( ( x ^ 2 ) e. RR+ /\ m e. RR+ ) -> ( ( x ^ 2 ) / m ) e. RR+ ) | 
						
							| 127 | 125 31 126 | syl2an |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( x ^ 2 ) / m ) e. RR+ ) | 
						
							| 128 | 127 | rpsqrtcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` ( ( x ^ 2 ) / m ) ) e. RR+ ) | 
						
							| 129 | 128 | rpred |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` ( ( x ^ 2 ) / m ) ) e. RR ) | 
						
							| 130 |  | remulcl |  |-  ( ( 2 e. RR /\ ( sqrt ` ( ( x ^ 2 ) / m ) ) e. RR ) -> ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) e. RR ) | 
						
							| 131 | 121 129 130 | sylancr |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) e. RR ) | 
						
							| 132 | 131 | recnd |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) e. CC ) | 
						
							| 133 | 108 132 | mulcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) e. CC ) | 
						
							| 134 | 22 117 133 | fsumsub |  |-  ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) - ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) = ( sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) ) | 
						
							| 135 | 113 | rpcnne0d |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( ( sqrt ` d ) e. CC /\ ( sqrt ` d ) =/= 0 ) ) | 
						
							| 136 |  | reccl |  |-  ( ( ( sqrt ` d ) e. CC /\ ( sqrt ` d ) =/= 0 ) -> ( 1 / ( sqrt ` d ) ) e. CC ) | 
						
							| 137 | 135 136 | syl |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( 1 / ( sqrt ` d ) ) e. CC ) | 
						
							| 138 | 104 137 | fsumcl |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( 1 / ( sqrt ` d ) ) e. CC ) | 
						
							| 139 | 108 138 132 | subdid |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) = ( ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( 1 / ( sqrt ` d ) ) ) - ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) ) | 
						
							| 140 |  | fveq2 |  |-  ( y = ( ( x ^ 2 ) / m ) -> ( |_ ` y ) = ( |_ ` ( ( x ^ 2 ) / m ) ) ) | 
						
							| 141 | 140 | oveq2d |  |-  ( y = ( ( x ^ 2 ) / m ) -> ( 1 ... ( |_ ` y ) ) = ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) | 
						
							| 142 | 141 | sumeq1d |  |-  ( y = ( ( x ^ 2 ) / m ) -> sum_ d e. ( 1 ... ( |_ ` y ) ) ( 1 / ( sqrt ` d ) ) = sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( 1 / ( sqrt ` d ) ) ) | 
						
							| 143 |  | fveq2 |  |-  ( y = ( ( x ^ 2 ) / m ) -> ( sqrt ` y ) = ( sqrt ` ( ( x ^ 2 ) / m ) ) ) | 
						
							| 144 | 143 | oveq2d |  |-  ( y = ( ( x ^ 2 ) / m ) -> ( 2 x. ( sqrt ` y ) ) = ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) | 
						
							| 145 | 142 144 | oveq12d |  |-  ( y = ( ( x ^ 2 ) / m ) -> ( sum_ d e. ( 1 ... ( |_ ` y ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` y ) ) ) = ( sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) | 
						
							| 146 |  | ovex |  |-  ( sum_ d e. ( 1 ... ( |_ ` y ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` y ) ) ) e. _V | 
						
							| 147 | 145 13 146 | fvmpt3i |  |-  ( ( ( x ^ 2 ) / m ) e. RR+ -> ( H ` ( ( x ^ 2 ) / m ) ) = ( sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) | 
						
							| 148 | 127 147 | syl |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( H ` ( ( x ^ 2 ) / m ) ) = ( sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) | 
						
							| 149 | 148 | oveq2d |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) = ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) ) | 
						
							| 150 | 109 114 115 | divrecd |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) = ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 1 / ( sqrt ` d ) ) ) ) | 
						
							| 151 | 150 | sumeq2dv |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) = sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 1 / ( sqrt ` d ) ) ) ) | 
						
							| 152 | 104 108 137 | fsummulc2 |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( 1 / ( sqrt ` d ) ) ) = sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 1 / ( sqrt ` d ) ) ) ) | 
						
							| 153 | 151 152 | eqtr4d |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) = ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( 1 / ( sqrt ` d ) ) ) ) | 
						
							| 154 | 153 | oveq1d |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) - ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) = ( ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( 1 / ( sqrt ` d ) ) ) - ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) ) | 
						
							| 155 | 139 149 154 | 3eqtr4d |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) = ( sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) - ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) ) | 
						
							| 156 | 155 | sumeq2dv |  |-  ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) = sum_ m e. ( 1 ... ( |_ ` x ) ) ( sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) - ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) ) | 
						
							| 157 |  | mulcl |  |-  ( ( 2 e. CC /\ x e. CC ) -> ( 2 x. x ) e. CC ) | 
						
							| 158 | 39 21 157 | sylancr |  |-  ( ( ph /\ x e. RR+ ) -> ( 2 x. x ) e. CC ) | 
						
							| 159 | 22 158 35 | fsummulc2 |  |-  ( ( ph /\ x e. RR+ ) -> ( ( 2 x. x ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) = sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( 2 x. x ) x. ( ( X ` ( L ` m ) ) / m ) ) ) | 
						
							| 160 | 19 21 36 | mulassd |  |-  ( ( ph /\ x e. RR+ ) -> ( ( 2 x. x ) x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) = ( 2 x. ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) ) | 
						
							| 161 | 158 | adantr |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. x ) e. CC ) | 
						
							| 162 | 161 108 106 107 | div12d |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 2 x. x ) x. ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` m ) ) ) = ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( 2 x. x ) / ( sqrt ` m ) ) ) ) | 
						
							| 163 | 105 | rpcnne0d |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sqrt ` m ) e. CC /\ ( sqrt ` m ) =/= 0 ) ) | 
						
							| 164 |  | divdiv1 |  |-  ( ( ( X ` ( L ` m ) ) e. CC /\ ( ( sqrt ` m ) e. CC /\ ( sqrt ` m ) =/= 0 ) /\ ( ( sqrt ` m ) e. CC /\ ( sqrt ` m ) =/= 0 ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` m ) ) = ( ( X ` ( L ` m ) ) / ( ( sqrt ` m ) x. ( sqrt ` m ) ) ) ) | 
						
							| 165 | 29 163 163 164 | syl3anc |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` m ) ) = ( ( X ` ( L ` m ) ) / ( ( sqrt ` m ) x. ( sqrt ` m ) ) ) ) | 
						
							| 166 | 32 | rprege0d |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( m e. RR /\ 0 <_ m ) ) | 
						
							| 167 |  | remsqsqrt |  |-  ( ( m e. RR /\ 0 <_ m ) -> ( ( sqrt ` m ) x. ( sqrt ` m ) ) = m ) | 
						
							| 168 | 166 167 | syl |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sqrt ` m ) x. ( sqrt ` m ) ) = m ) | 
						
							| 169 | 168 | oveq2d |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( X ` ( L ` m ) ) / ( ( sqrt ` m ) x. ( sqrt ` m ) ) ) = ( ( X ` ( L ` m ) ) / m ) ) | 
						
							| 170 | 165 169 | eqtr2d |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( X ` ( L ` m ) ) / m ) = ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` m ) ) ) | 
						
							| 171 | 170 | oveq2d |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 2 x. x ) x. ( ( X ` ( L ` m ) ) / m ) ) = ( ( 2 x. x ) x. ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` m ) ) ) ) | 
						
							| 172 | 125 | adantr |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( x ^ 2 ) e. RR+ ) | 
						
							| 173 | 172 | rprege0d |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( x ^ 2 ) e. RR /\ 0 <_ ( x ^ 2 ) ) ) | 
						
							| 174 |  | sqrtdiv |  |-  ( ( ( ( x ^ 2 ) e. RR /\ 0 <_ ( x ^ 2 ) ) /\ m e. RR+ ) -> ( sqrt ` ( ( x ^ 2 ) / m ) ) = ( ( sqrt ` ( x ^ 2 ) ) / ( sqrt ` m ) ) ) | 
						
							| 175 | 173 32 174 | syl2anc |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` ( ( x ^ 2 ) / m ) ) = ( ( sqrt ` ( x ^ 2 ) ) / ( sqrt ` m ) ) ) | 
						
							| 176 | 49 | ad2antlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( x e. RR /\ 0 <_ x ) ) | 
						
							| 177 |  | sqrtsq |  |-  ( ( x e. RR /\ 0 <_ x ) -> ( sqrt ` ( x ^ 2 ) ) = x ) | 
						
							| 178 | 176 177 | syl |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` ( x ^ 2 ) ) = x ) | 
						
							| 179 | 178 | oveq1d |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sqrt ` ( x ^ 2 ) ) / ( sqrt ` m ) ) = ( x / ( sqrt ` m ) ) ) | 
						
							| 180 | 175 179 | eqtrd |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` ( ( x ^ 2 ) / m ) ) = ( x / ( sqrt ` m ) ) ) | 
						
							| 181 | 180 | oveq2d |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) = ( 2 x. ( x / ( sqrt ` m ) ) ) ) | 
						
							| 182 |  | 2cnd |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> 2 e. CC ) | 
						
							| 183 | 21 | adantr |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> x e. CC ) | 
						
							| 184 |  | divass |  |-  ( ( 2 e. CC /\ x e. CC /\ ( ( sqrt ` m ) e. CC /\ ( sqrt ` m ) =/= 0 ) ) -> ( ( 2 x. x ) / ( sqrt ` m ) ) = ( 2 x. ( x / ( sqrt ` m ) ) ) ) | 
						
							| 185 | 182 183 163 184 | syl3anc |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 2 x. x ) / ( sqrt ` m ) ) = ( 2 x. ( x / ( sqrt ` m ) ) ) ) | 
						
							| 186 | 181 185 | eqtr4d |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) = ( ( 2 x. x ) / ( sqrt ` m ) ) ) | 
						
							| 187 | 186 | oveq2d |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) = ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( 2 x. x ) / ( sqrt ` m ) ) ) ) | 
						
							| 188 | 162 171 187 | 3eqtr4d |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 2 x. x ) x. ( ( X ` ( L ` m ) ) / m ) ) = ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) | 
						
							| 189 | 188 | sumeq2dv |  |-  ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( 2 x. x ) x. ( ( X ` ( L ` m ) ) / m ) ) = sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) | 
						
							| 190 | 159 160 189 | 3eqtr3d |  |-  ( ( ph /\ x e. RR+ ) -> ( 2 x. ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) = sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) | 
						
							| 191 | 190 | oveq2d |  |-  ( ( ph /\ x e. RR+ ) -> ( sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) - ( 2 x. ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) ) = ( sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( 2 x. ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) ) ) | 
						
							| 192 | 134 156 191 | 3eqtr4d |  |-  ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) = ( sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) - ( 2 x. ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) ) ) | 
						
							| 193 | 192 | mpteq2dva |  |-  ( ph -> ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) ) = ( x e. RR+ |-> ( sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) - ( 2 x. ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) ) ) ) | 
						
							| 194 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | dchrisum0lem2a |  |-  ( ph -> ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) ) e. O(1) ) | 
						
							| 195 | 193 194 | eqeltrrd |  |-  ( ph -> ( x e. RR+ |-> ( sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) - ( 2 x. ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) ) ) e. O(1) ) | 
						
							| 196 | 118 120 195 | o1dif |  |-  ( ph -> ( ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) e. O(1) <-> ( x e. RR+ |-> ( 2 x. ( x x. sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / m ) ) ) ) e. O(1) ) ) | 
						
							| 197 | 103 196 | mpbird |  |-  ( ph -> ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ d e. ( 1 ... ( |_ ` ( ( x ^ 2 ) / m ) ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) / ( sqrt ` d ) ) ) e. O(1) ) |