| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpvmasum.z |  |-  Z = ( Z/nZ ` N ) | 
						
							| 2 |  | rpvmasum.l |  |-  L = ( ZRHom ` Z ) | 
						
							| 3 |  | rpvmasum.a |  |-  ( ph -> N e. NN ) | 
						
							| 4 |  | rpvmasum2.g |  |-  G = ( DChr ` N ) | 
						
							| 5 |  | rpvmasum2.d |  |-  D = ( Base ` G ) | 
						
							| 6 |  | rpvmasum2.1 |  |-  .1. = ( 0g ` G ) | 
						
							| 7 |  | rpvmasum2.w |  |-  W = { y e. ( D \ { .1. } ) | sum_ m e. NN ( ( y ` ( L ` m ) ) / m ) = 0 } | 
						
							| 8 |  | dchrisum0.b |  |-  ( ph -> X e. W ) | 
						
							| 9 |  | dchrisum0lem1.f |  |-  F = ( a e. NN |-> ( ( X ` ( L ` a ) ) / ( sqrt ` a ) ) ) | 
						
							| 10 |  | dchrisum0.c |  |-  ( ph -> C e. ( 0 [,) +oo ) ) | 
						
							| 11 |  | dchrisum0.s |  |-  ( ph -> seq 1 ( + , F ) ~~> S ) | 
						
							| 12 |  | dchrisum0.1 |  |-  ( ph -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` y ) ) - S ) ) <_ ( C / ( sqrt ` y ) ) ) | 
						
							| 13 |  | dchrisum0lem2.h |  |-  H = ( y e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` y ) ) ( 1 / ( sqrt ` d ) ) - ( 2 x. ( sqrt ` y ) ) ) ) | 
						
							| 14 |  | dchrisum0lem2.u |  |-  ( ph -> H ~~>r U ) | 
						
							| 15 |  | fzfid |  |-  ( ( ph /\ x e. RR+ ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) | 
						
							| 16 |  | simpl |  |-  ( ( ph /\ x e. RR+ ) -> ph ) | 
						
							| 17 |  | elfznn |  |-  ( m e. ( 1 ... ( |_ ` x ) ) -> m e. NN ) | 
						
							| 18 | 7 | ssrab3 |  |-  W C_ ( D \ { .1. } ) | 
						
							| 19 | 18 8 | sselid |  |-  ( ph -> X e. ( D \ { .1. } ) ) | 
						
							| 20 | 19 | eldifad |  |-  ( ph -> X e. D ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ph /\ m e. NN ) -> X e. D ) | 
						
							| 22 |  | nnz |  |-  ( m e. NN -> m e. ZZ ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ph /\ m e. NN ) -> m e. ZZ ) | 
						
							| 24 | 4 1 5 2 21 23 | dchrzrhcl |  |-  ( ( ph /\ m e. NN ) -> ( X ` ( L ` m ) ) e. CC ) | 
						
							| 25 |  | nnrp |  |-  ( m e. NN -> m e. RR+ ) | 
						
							| 26 | 25 | adantl |  |-  ( ( ph /\ m e. NN ) -> m e. RR+ ) | 
						
							| 27 | 26 | rpsqrtcld |  |-  ( ( ph /\ m e. NN ) -> ( sqrt ` m ) e. RR+ ) | 
						
							| 28 | 27 | rpcnd |  |-  ( ( ph /\ m e. NN ) -> ( sqrt ` m ) e. CC ) | 
						
							| 29 | 27 | rpne0d |  |-  ( ( ph /\ m e. NN ) -> ( sqrt ` m ) =/= 0 ) | 
						
							| 30 | 24 28 29 | divcld |  |-  ( ( ph /\ m e. NN ) -> ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) e. CC ) | 
						
							| 31 | 16 17 30 | syl2an |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) e. CC ) | 
						
							| 32 | 15 31 | fsumcl |  |-  ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) e. CC ) | 
						
							| 33 |  | rlimcl |  |-  ( H ~~>r U -> U e. CC ) | 
						
							| 34 | 14 33 | syl |  |-  ( ph -> U e. CC ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ph /\ x e. RR+ ) -> U e. CC ) | 
						
							| 36 |  | 0xr |  |-  0 e. RR* | 
						
							| 37 |  | 0lt1 |  |-  0 < 1 | 
						
							| 38 |  | df-ioo |  |-  (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) | 
						
							| 39 |  | df-ico |  |-  [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) | 
						
							| 40 |  | xrltletr |  |-  ( ( 0 e. RR* /\ 1 e. RR* /\ w e. RR* ) -> ( ( 0 < 1 /\ 1 <_ w ) -> 0 < w ) ) | 
						
							| 41 | 38 39 40 | ixxss1 |  |-  ( ( 0 e. RR* /\ 0 < 1 ) -> ( 1 [,) +oo ) C_ ( 0 (,) +oo ) ) | 
						
							| 42 | 36 37 41 | mp2an |  |-  ( 1 [,) +oo ) C_ ( 0 (,) +oo ) | 
						
							| 43 |  | ioorp |  |-  ( 0 (,) +oo ) = RR+ | 
						
							| 44 | 42 43 | sseqtri |  |-  ( 1 [,) +oo ) C_ RR+ | 
						
							| 45 |  | resmpt |  |-  ( ( 1 [,) +oo ) C_ RR+ -> ( ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) |` ( 1 [,) +oo ) ) = ( x e. ( 1 [,) +oo ) |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) ) | 
						
							| 46 | 44 45 | ax-mp |  |-  ( ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) |` ( 1 [,) +oo ) ) = ( x e. ( 1 [,) +oo ) |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) | 
						
							| 47 | 44 | sseli |  |-  ( x e. ( 1 [,) +oo ) -> x e. RR+ ) | 
						
							| 48 | 17 | adantl |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> m e. NN ) | 
						
							| 49 |  | 2fveq3 |  |-  ( a = m -> ( X ` ( L ` a ) ) = ( X ` ( L ` m ) ) ) | 
						
							| 50 |  | fveq2 |  |-  ( a = m -> ( sqrt ` a ) = ( sqrt ` m ) ) | 
						
							| 51 | 49 50 | oveq12d |  |-  ( a = m -> ( ( X ` ( L ` a ) ) / ( sqrt ` a ) ) = ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) | 
						
							| 52 |  | ovex |  |-  ( ( X ` ( L ` a ) ) / ( sqrt ` a ) ) e. _V | 
						
							| 53 | 51 9 52 | fvmpt3i |  |-  ( m e. NN -> ( F ` m ) = ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) | 
						
							| 54 | 48 53 | syl |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( F ` m ) = ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) | 
						
							| 55 | 47 54 | sylanl2 |  |-  ( ( ( ph /\ x e. ( 1 [,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( F ` m ) = ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) | 
						
							| 56 |  | 1re |  |-  1 e. RR | 
						
							| 57 |  | elicopnf |  |-  ( 1 e. RR -> ( x e. ( 1 [,) +oo ) <-> ( x e. RR /\ 1 <_ x ) ) ) | 
						
							| 58 | 56 57 | ax-mp |  |-  ( x e. ( 1 [,) +oo ) <-> ( x e. RR /\ 1 <_ x ) ) | 
						
							| 59 |  | flge1nn |  |-  ( ( x e. RR /\ 1 <_ x ) -> ( |_ ` x ) e. NN ) | 
						
							| 60 | 58 59 | sylbi |  |-  ( x e. ( 1 [,) +oo ) -> ( |_ ` x ) e. NN ) | 
						
							| 61 | 60 | adantl |  |-  ( ( ph /\ x e. ( 1 [,) +oo ) ) -> ( |_ ` x ) e. NN ) | 
						
							| 62 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 63 | 61 62 | eleqtrdi |  |-  ( ( ph /\ x e. ( 1 [,) +oo ) ) -> ( |_ ` x ) e. ( ZZ>= ` 1 ) ) | 
						
							| 64 | 47 31 | sylanl2 |  |-  ( ( ( ph /\ x e. ( 1 [,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) e. CC ) | 
						
							| 65 | 55 63 64 | fsumser |  |-  ( ( ph /\ x e. ( 1 [,) +oo ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) = ( seq 1 ( + , F ) ` ( |_ ` x ) ) ) | 
						
							| 66 | 65 | mpteq2dva |  |-  ( ph -> ( x e. ( 1 [,) +oo ) |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) = ( x e. ( 1 [,) +oo ) |-> ( seq 1 ( + , F ) ` ( |_ ` x ) ) ) ) | 
						
							| 67 | 46 66 | eqtrid |  |-  ( ph -> ( ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) |` ( 1 [,) +oo ) ) = ( x e. ( 1 [,) +oo ) |-> ( seq 1 ( + , F ) ` ( |_ ` x ) ) ) ) | 
						
							| 68 |  | fveq2 |  |-  ( m = ( |_ ` x ) -> ( seq 1 ( + , F ) ` m ) = ( seq 1 ( + , F ) ` ( |_ ` x ) ) ) | 
						
							| 69 |  | rpssre |  |-  RR+ C_ RR | 
						
							| 70 | 69 | a1i |  |-  ( ph -> RR+ C_ RR ) | 
						
							| 71 | 44 70 | sstrid |  |-  ( ph -> ( 1 [,) +oo ) C_ RR ) | 
						
							| 72 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 73 | 51 | cbvmptv |  |-  ( a e. NN |-> ( ( X ` ( L ` a ) ) / ( sqrt ` a ) ) ) = ( m e. NN |-> ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) | 
						
							| 74 | 9 73 | eqtri |  |-  F = ( m e. NN |-> ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) | 
						
							| 75 | 30 74 | fmptd |  |-  ( ph -> F : NN --> CC ) | 
						
							| 76 | 75 | ffvelcdmda |  |-  ( ( ph /\ m e. NN ) -> ( F ` m ) e. CC ) | 
						
							| 77 | 62 72 76 | serf |  |-  ( ph -> seq 1 ( + , F ) : NN --> CC ) | 
						
							| 78 | 77 | feqmptd |  |-  ( ph -> seq 1 ( + , F ) = ( m e. NN |-> ( seq 1 ( + , F ) ` m ) ) ) | 
						
							| 79 | 78 11 | eqbrtrrd |  |-  ( ph -> ( m e. NN |-> ( seq 1 ( + , F ) ` m ) ) ~~> S ) | 
						
							| 80 | 77 | ffvelcdmda |  |-  ( ( ph /\ m e. NN ) -> ( seq 1 ( + , F ) ` m ) e. CC ) | 
						
							| 81 | 58 | simprbi |  |-  ( x e. ( 1 [,) +oo ) -> 1 <_ x ) | 
						
							| 82 | 81 | adantl |  |-  ( ( ph /\ x e. ( 1 [,) +oo ) ) -> 1 <_ x ) | 
						
							| 83 | 62 68 71 72 79 80 82 | climrlim2 |  |-  ( ph -> ( x e. ( 1 [,) +oo ) |-> ( seq 1 ( + , F ) ` ( |_ ` x ) ) ) ~~>r S ) | 
						
							| 84 |  | rlimo1 |  |-  ( ( x e. ( 1 [,) +oo ) |-> ( seq 1 ( + , F ) ` ( |_ ` x ) ) ) ~~>r S -> ( x e. ( 1 [,) +oo ) |-> ( seq 1 ( + , F ) ` ( |_ ` x ) ) ) e. O(1) ) | 
						
							| 85 | 83 84 | syl |  |-  ( ph -> ( x e. ( 1 [,) +oo ) |-> ( seq 1 ( + , F ) ` ( |_ ` x ) ) ) e. O(1) ) | 
						
							| 86 | 67 85 | eqeltrd |  |-  ( ph -> ( ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) |` ( 1 [,) +oo ) ) e. O(1) ) | 
						
							| 87 | 32 | fmpttd |  |-  ( ph -> ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) : RR+ --> CC ) | 
						
							| 88 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 89 | 87 70 88 | o1resb |  |-  ( ph -> ( ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) e. O(1) <-> ( ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) |` ( 1 [,) +oo ) ) e. O(1) ) ) | 
						
							| 90 | 86 89 | mpbird |  |-  ( ph -> ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) e. O(1) ) | 
						
							| 91 |  | o1const |  |-  ( ( RR+ C_ RR /\ U e. CC ) -> ( x e. RR+ |-> U ) e. O(1) ) | 
						
							| 92 | 69 34 91 | sylancr |  |-  ( ph -> ( x e. RR+ |-> U ) e. O(1) ) | 
						
							| 93 | 32 35 90 92 | o1mul2 |  |-  ( ph -> ( x e. RR+ |-> ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) ) e. O(1) ) | 
						
							| 94 |  | simpr |  |-  ( ( ph /\ x e. RR+ ) -> x e. RR+ ) | 
						
							| 95 |  | 2z |  |-  2 e. ZZ | 
						
							| 96 |  | rpexpcl |  |-  ( ( x e. RR+ /\ 2 e. ZZ ) -> ( x ^ 2 ) e. RR+ ) | 
						
							| 97 | 94 95 96 | sylancl |  |-  ( ( ph /\ x e. RR+ ) -> ( x ^ 2 ) e. RR+ ) | 
						
							| 98 | 17 | nnrpd |  |-  ( m e. ( 1 ... ( |_ ` x ) ) -> m e. RR+ ) | 
						
							| 99 |  | rpdivcl |  |-  ( ( ( x ^ 2 ) e. RR+ /\ m e. RR+ ) -> ( ( x ^ 2 ) / m ) e. RR+ ) | 
						
							| 100 | 97 98 99 | syl2an |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( x ^ 2 ) / m ) e. RR+ ) | 
						
							| 101 | 13 | divsqrsumf |  |-  H : RR+ --> RR | 
						
							| 102 | 101 | ffvelcdmi |  |-  ( ( ( x ^ 2 ) / m ) e. RR+ -> ( H ` ( ( x ^ 2 ) / m ) ) e. RR ) | 
						
							| 103 | 100 102 | syl |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( H ` ( ( x ^ 2 ) / m ) ) e. RR ) | 
						
							| 104 | 103 | recnd |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( H ` ( ( x ^ 2 ) / m ) ) e. CC ) | 
						
							| 105 | 31 104 | mulcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) e. CC ) | 
						
							| 106 | 15 105 | fsumcl |  |-  ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) e. CC ) | 
						
							| 107 | 32 35 | mulcld |  |-  ( ( ph /\ x e. RR+ ) -> ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) e. CC ) | 
						
							| 108 | 14 | ad2antrr |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> H ~~>r U ) | 
						
							| 109 | 108 33 | syl |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> U e. CC ) | 
						
							| 110 | 31 109 | mulcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) e. CC ) | 
						
							| 111 | 15 105 110 | fsumsub |  |-  ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) - ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) ) = ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) ) ) | 
						
							| 112 | 31 104 109 | subdid |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) = ( ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) - ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) ) ) | 
						
							| 113 | 112 | sumeq2dv |  |-  ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) = sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) - ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) ) ) | 
						
							| 114 | 15 35 31 | fsummulc1 |  |-  ( ( ph /\ x e. RR+ ) -> ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) = sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) ) | 
						
							| 115 | 114 | oveq2d |  |-  ( ( ph /\ x e. RR+ ) -> ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) - ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) ) = ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) - sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) ) ) | 
						
							| 116 | 111 113 115 | 3eqtr4d |  |-  ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) = ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) - ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) ) ) | 
						
							| 117 | 116 | mpteq2dva |  |-  ( ph -> ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) = ( x e. RR+ |-> ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) - ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) ) ) ) | 
						
							| 118 | 104 109 | subcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) e. CC ) | 
						
							| 119 | 31 118 | mulcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) e. CC ) | 
						
							| 120 | 15 119 | fsumcl |  |-  ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) e. CC ) | 
						
							| 121 | 120 | abscld |  |-  ( ( ph /\ x e. RR+ ) -> ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) e. RR ) | 
						
							| 122 | 119 | abscld |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) e. RR ) | 
						
							| 123 | 15 122 | fsumrecl |  |-  ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) e. RR ) | 
						
							| 124 |  | 1red |  |-  ( ( ph /\ x e. RR+ ) -> 1 e. RR ) | 
						
							| 125 | 15 119 | fsumabs |  |-  ( ( ph /\ x e. RR+ ) -> ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) <_ sum_ m e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) ) | 
						
							| 126 |  | rprege0 |  |-  ( x e. RR+ -> ( x e. RR /\ 0 <_ x ) ) | 
						
							| 127 | 126 | adantl |  |-  ( ( ph /\ x e. RR+ ) -> ( x e. RR /\ 0 <_ x ) ) | 
						
							| 128 | 127 | simpld |  |-  ( ( ph /\ x e. RR+ ) -> x e. RR ) | 
						
							| 129 |  | reflcl |  |-  ( x e. RR -> ( |_ ` x ) e. RR ) | 
						
							| 130 | 128 129 | syl |  |-  ( ( ph /\ x e. RR+ ) -> ( |_ ` x ) e. RR ) | 
						
							| 131 | 130 94 | rerpdivcld |  |-  ( ( ph /\ x e. RR+ ) -> ( ( |_ ` x ) / x ) e. RR ) | 
						
							| 132 |  | simplr |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR+ ) | 
						
							| 133 | 132 | rprecred |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / x ) e. RR ) | 
						
							| 134 | 31 | abscld |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) e. RR ) | 
						
							| 135 | 98 | rpsqrtcld |  |-  ( m e. ( 1 ... ( |_ ` x ) ) -> ( sqrt ` m ) e. RR+ ) | 
						
							| 136 | 135 | adantl |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` m ) e. RR+ ) | 
						
							| 137 | 136 | rprecred |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / ( sqrt ` m ) ) e. RR ) | 
						
							| 138 | 118 | abscld |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) e. RR ) | 
						
							| 139 | 136 132 | rpdivcld |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sqrt ` m ) / x ) e. RR+ ) | 
						
							| 140 | 69 139 | sselid |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sqrt ` m ) / x ) e. RR ) | 
						
							| 141 | 31 | absge0d |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( abs ` ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) ) | 
						
							| 142 | 118 | absge0d |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( abs ` ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) | 
						
							| 143 | 16 17 24 | syl2an |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( X ` ( L ` m ) ) e. CC ) | 
						
							| 144 | 136 | rpcnd |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` m ) e. CC ) | 
						
							| 145 | 136 | rpne0d |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` m ) =/= 0 ) | 
						
							| 146 | 143 144 145 | absdivd |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) = ( ( abs ` ( X ` ( L ` m ) ) ) / ( abs ` ( sqrt ` m ) ) ) ) | 
						
							| 147 | 136 | rprege0d |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sqrt ` m ) e. RR /\ 0 <_ ( sqrt ` m ) ) ) | 
						
							| 148 |  | absid |  |-  ( ( ( sqrt ` m ) e. RR /\ 0 <_ ( sqrt ` m ) ) -> ( abs ` ( sqrt ` m ) ) = ( sqrt ` m ) ) | 
						
							| 149 | 147 148 | syl |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( sqrt ` m ) ) = ( sqrt ` m ) ) | 
						
							| 150 | 149 | oveq2d |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( X ` ( L ` m ) ) ) / ( abs ` ( sqrt ` m ) ) ) = ( ( abs ` ( X ` ( L ` m ) ) ) / ( sqrt ` m ) ) ) | 
						
							| 151 | 146 150 | eqtrd |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) = ( ( abs ` ( X ` ( L ` m ) ) ) / ( sqrt ` m ) ) ) | 
						
							| 152 | 143 | abscld |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( X ` ( L ` m ) ) ) e. RR ) | 
						
							| 153 |  | 1red |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. RR ) | 
						
							| 154 |  | eqid |  |-  ( Base ` Z ) = ( Base ` Z ) | 
						
							| 155 | 20 | ad2antrr |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> X e. D ) | 
						
							| 156 | 3 | nnnn0d |  |-  ( ph -> N e. NN0 ) | 
						
							| 157 | 1 154 2 | znzrhfo |  |-  ( N e. NN0 -> L : ZZ -onto-> ( Base ` Z ) ) | 
						
							| 158 |  | fof |  |-  ( L : ZZ -onto-> ( Base ` Z ) -> L : ZZ --> ( Base ` Z ) ) | 
						
							| 159 | 156 157 158 | 3syl |  |-  ( ph -> L : ZZ --> ( Base ` Z ) ) | 
						
							| 160 | 159 | adantr |  |-  ( ( ph /\ x e. RR+ ) -> L : ZZ --> ( Base ` Z ) ) | 
						
							| 161 |  | elfzelz |  |-  ( m e. ( 1 ... ( |_ ` x ) ) -> m e. ZZ ) | 
						
							| 162 |  | ffvelcdm |  |-  ( ( L : ZZ --> ( Base ` Z ) /\ m e. ZZ ) -> ( L ` m ) e. ( Base ` Z ) ) | 
						
							| 163 | 160 161 162 | syl2an |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( L ` m ) e. ( Base ` Z ) ) | 
						
							| 164 | 4 5 1 154 155 163 | dchrabs2 |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( X ` ( L ` m ) ) ) <_ 1 ) | 
						
							| 165 | 152 153 136 164 | lediv1dd |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( X ` ( L ` m ) ) ) / ( sqrt ` m ) ) <_ ( 1 / ( sqrt ` m ) ) ) | 
						
							| 166 | 151 165 | eqbrtrd |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) <_ ( 1 / ( sqrt ` m ) ) ) | 
						
							| 167 | 13 108 | divsqrtsum2 |  |-  ( ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ ( ( x ^ 2 ) / m ) e. RR+ ) -> ( abs ` ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) <_ ( 1 / ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) | 
						
							| 168 | 100 167 | mpdan |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) <_ ( 1 / ( sqrt ` ( ( x ^ 2 ) / m ) ) ) ) | 
						
							| 169 | 97 | rprege0d |  |-  ( ( ph /\ x e. RR+ ) -> ( ( x ^ 2 ) e. RR /\ 0 <_ ( x ^ 2 ) ) ) | 
						
							| 170 |  | sqrtdiv |  |-  ( ( ( ( x ^ 2 ) e. RR /\ 0 <_ ( x ^ 2 ) ) /\ m e. RR+ ) -> ( sqrt ` ( ( x ^ 2 ) / m ) ) = ( ( sqrt ` ( x ^ 2 ) ) / ( sqrt ` m ) ) ) | 
						
							| 171 | 169 98 170 | syl2an |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` ( ( x ^ 2 ) / m ) ) = ( ( sqrt ` ( x ^ 2 ) ) / ( sqrt ` m ) ) ) | 
						
							| 172 | 126 | ad2antlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( x e. RR /\ 0 <_ x ) ) | 
						
							| 173 |  | sqrtsq |  |-  ( ( x e. RR /\ 0 <_ x ) -> ( sqrt ` ( x ^ 2 ) ) = x ) | 
						
							| 174 | 172 173 | syl |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` ( x ^ 2 ) ) = x ) | 
						
							| 175 | 174 | oveq1d |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sqrt ` ( x ^ 2 ) ) / ( sqrt ` m ) ) = ( x / ( sqrt ` m ) ) ) | 
						
							| 176 | 171 175 | eqtrd |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sqrt ` ( ( x ^ 2 ) / m ) ) = ( x / ( sqrt ` m ) ) ) | 
						
							| 177 | 176 | oveq2d |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / ( sqrt ` ( ( x ^ 2 ) / m ) ) ) = ( 1 / ( x / ( sqrt ` m ) ) ) ) | 
						
							| 178 |  | rpcnne0 |  |-  ( x e. RR+ -> ( x e. CC /\ x =/= 0 ) ) | 
						
							| 179 | 178 | ad2antlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( x e. CC /\ x =/= 0 ) ) | 
						
							| 180 | 136 | rpcnne0d |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sqrt ` m ) e. CC /\ ( sqrt ` m ) =/= 0 ) ) | 
						
							| 181 |  | recdiv |  |-  ( ( ( x e. CC /\ x =/= 0 ) /\ ( ( sqrt ` m ) e. CC /\ ( sqrt ` m ) =/= 0 ) ) -> ( 1 / ( x / ( sqrt ` m ) ) ) = ( ( sqrt ` m ) / x ) ) | 
						
							| 182 | 179 180 181 | syl2anc |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / ( x / ( sqrt ` m ) ) ) = ( ( sqrt ` m ) / x ) ) | 
						
							| 183 | 177 182 | eqtrd |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / ( sqrt ` ( ( x ^ 2 ) / m ) ) ) = ( ( sqrt ` m ) / x ) ) | 
						
							| 184 | 168 183 | breqtrd |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) <_ ( ( sqrt ` m ) / x ) ) | 
						
							| 185 | 134 137 138 140 141 142 166 184 | lemul12ad |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) x. ( abs ` ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) <_ ( ( 1 / ( sqrt ` m ) ) x. ( ( sqrt ` m ) / x ) ) ) | 
						
							| 186 | 31 118 | absmuld |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) = ( ( abs ` ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) ) x. ( abs ` ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) ) | 
						
							| 187 |  | 1cnd |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. CC ) | 
						
							| 188 |  | dmdcan |  |-  ( ( ( ( sqrt ` m ) e. CC /\ ( sqrt ` m ) =/= 0 ) /\ ( x e. CC /\ x =/= 0 ) /\ 1 e. CC ) -> ( ( ( sqrt ` m ) / x ) x. ( 1 / ( sqrt ` m ) ) ) = ( 1 / x ) ) | 
						
							| 189 | 180 179 187 188 | syl3anc |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( sqrt ` m ) / x ) x. ( 1 / ( sqrt ` m ) ) ) = ( 1 / x ) ) | 
						
							| 190 | 139 | rpcnd |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sqrt ` m ) / x ) e. CC ) | 
						
							| 191 |  | reccl |  |-  ( ( ( sqrt ` m ) e. CC /\ ( sqrt ` m ) =/= 0 ) -> ( 1 / ( sqrt ` m ) ) e. CC ) | 
						
							| 192 | 180 191 | syl |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / ( sqrt ` m ) ) e. CC ) | 
						
							| 193 | 190 192 | mulcomd |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( sqrt ` m ) / x ) x. ( 1 / ( sqrt ` m ) ) ) = ( ( 1 / ( sqrt ` m ) ) x. ( ( sqrt ` m ) / x ) ) ) | 
						
							| 194 | 189 193 | eqtr3d |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / x ) = ( ( 1 / ( sqrt ` m ) ) x. ( ( sqrt ` m ) / x ) ) ) | 
						
							| 195 | 185 186 194 | 3brtr4d |  |-  ( ( ( ph /\ x e. RR+ ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) <_ ( 1 / x ) ) | 
						
							| 196 | 15 122 133 195 | fsumle |  |-  ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) <_ sum_ m e. ( 1 ... ( |_ ` x ) ) ( 1 / x ) ) | 
						
							| 197 |  | flge0nn0 |  |-  ( ( x e. RR /\ 0 <_ x ) -> ( |_ ` x ) e. NN0 ) | 
						
							| 198 |  | hashfz1 |  |-  ( ( |_ ` x ) e. NN0 -> ( # ` ( 1 ... ( |_ ` x ) ) ) = ( |_ ` x ) ) | 
						
							| 199 | 127 197 198 | 3syl |  |-  ( ( ph /\ x e. RR+ ) -> ( # ` ( 1 ... ( |_ ` x ) ) ) = ( |_ ` x ) ) | 
						
							| 200 | 199 | oveq1d |  |-  ( ( ph /\ x e. RR+ ) -> ( ( # ` ( 1 ... ( |_ ` x ) ) ) x. ( 1 / x ) ) = ( ( |_ ` x ) x. ( 1 / x ) ) ) | 
						
							| 201 | 94 | rpreccld |  |-  ( ( ph /\ x e. RR+ ) -> ( 1 / x ) e. RR+ ) | 
						
							| 202 | 201 | rpcnd |  |-  ( ( ph /\ x e. RR+ ) -> ( 1 / x ) e. CC ) | 
						
							| 203 |  | fsumconst |  |-  ( ( ( 1 ... ( |_ ` x ) ) e. Fin /\ ( 1 / x ) e. CC ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( 1 / x ) = ( ( # ` ( 1 ... ( |_ ` x ) ) ) x. ( 1 / x ) ) ) | 
						
							| 204 | 15 202 203 | syl2anc |  |-  ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( 1 / x ) = ( ( # ` ( 1 ... ( |_ ` x ) ) ) x. ( 1 / x ) ) ) | 
						
							| 205 | 130 | recnd |  |-  ( ( ph /\ x e. RR+ ) -> ( |_ ` x ) e. CC ) | 
						
							| 206 | 178 | adantl |  |-  ( ( ph /\ x e. RR+ ) -> ( x e. CC /\ x =/= 0 ) ) | 
						
							| 207 | 206 | simpld |  |-  ( ( ph /\ x e. RR+ ) -> x e. CC ) | 
						
							| 208 | 206 | simprd |  |-  ( ( ph /\ x e. RR+ ) -> x =/= 0 ) | 
						
							| 209 | 205 207 208 | divrecd |  |-  ( ( ph /\ x e. RR+ ) -> ( ( |_ ` x ) / x ) = ( ( |_ ` x ) x. ( 1 / x ) ) ) | 
						
							| 210 | 200 204 209 | 3eqtr4d |  |-  ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( 1 / x ) = ( ( |_ ` x ) / x ) ) | 
						
							| 211 | 196 210 | breqtrd |  |-  ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) <_ ( ( |_ ` x ) / x ) ) | 
						
							| 212 |  | flle |  |-  ( x e. RR -> ( |_ ` x ) <_ x ) | 
						
							| 213 | 128 212 | syl |  |-  ( ( ph /\ x e. RR+ ) -> ( |_ ` x ) <_ x ) | 
						
							| 214 | 128 | recnd |  |-  ( ( ph /\ x e. RR+ ) -> x e. CC ) | 
						
							| 215 | 214 | mulridd |  |-  ( ( ph /\ x e. RR+ ) -> ( x x. 1 ) = x ) | 
						
							| 216 | 213 215 | breqtrrd |  |-  ( ( ph /\ x e. RR+ ) -> ( |_ ` x ) <_ ( x x. 1 ) ) | 
						
							| 217 |  | rpregt0 |  |-  ( x e. RR+ -> ( x e. RR /\ 0 < x ) ) | 
						
							| 218 | 217 | adantl |  |-  ( ( ph /\ x e. RR+ ) -> ( x e. RR /\ 0 < x ) ) | 
						
							| 219 |  | ledivmul |  |-  ( ( ( |_ ` x ) e. RR /\ 1 e. RR /\ ( x e. RR /\ 0 < x ) ) -> ( ( ( |_ ` x ) / x ) <_ 1 <-> ( |_ ` x ) <_ ( x x. 1 ) ) ) | 
						
							| 220 | 130 124 218 219 | syl3anc |  |-  ( ( ph /\ x e. RR+ ) -> ( ( ( |_ ` x ) / x ) <_ 1 <-> ( |_ ` x ) <_ ( x x. 1 ) ) ) | 
						
							| 221 | 216 220 | mpbird |  |-  ( ( ph /\ x e. RR+ ) -> ( ( |_ ` x ) / x ) <_ 1 ) | 
						
							| 222 | 123 131 124 211 221 | letrd |  |-  ( ( ph /\ x e. RR+ ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) <_ 1 ) | 
						
							| 223 | 121 123 124 125 222 | letrd |  |-  ( ( ph /\ x e. RR+ ) -> ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) <_ 1 ) | 
						
							| 224 | 223 | adantrr |  |-  ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) <_ 1 ) | 
						
							| 225 | 70 120 88 88 224 | elo1d |  |-  ( ph -> ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( ( H ` ( ( x ^ 2 ) / m ) ) - U ) ) ) e. O(1) ) | 
						
							| 226 | 117 225 | eqeltrrd |  |-  ( ph -> ( x e. RR+ |-> ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) - ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) ) ) e. O(1) ) | 
						
							| 227 | 106 107 226 | o1dif |  |-  ( ph -> ( ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) ) e. O(1) <-> ( x e. RR+ |-> ( sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. U ) ) e. O(1) ) ) | 
						
							| 228 | 93 227 | mpbird |  |-  ( ph -> ( x e. RR+ |-> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` m ) ) / ( sqrt ` m ) ) x. ( H ` ( ( x ^ 2 ) / m ) ) ) ) e. O(1) ) |