| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpvmasum.z | ⊢ 𝑍  =  ( ℤ/nℤ ‘ 𝑁 ) | 
						
							| 2 |  | rpvmasum.l | ⊢ 𝐿  =  ( ℤRHom ‘ 𝑍 ) | 
						
							| 3 |  | rpvmasum.a | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 4 |  | rpvmasum2.g | ⊢ 𝐺  =  ( DChr ‘ 𝑁 ) | 
						
							| 5 |  | rpvmasum2.d | ⊢ 𝐷  =  ( Base ‘ 𝐺 ) | 
						
							| 6 |  | rpvmasum2.1 | ⊢  1   =  ( 0g ‘ 𝐺 ) | 
						
							| 7 |  | rpvmasum2.w | ⊢ 𝑊  =  { 𝑦  ∈  ( 𝐷  ∖  {  1  } )  ∣  Σ 𝑚  ∈  ℕ ( ( 𝑦 ‘ ( 𝐿 ‘ 𝑚 ) )  /  𝑚 )  =  0 } | 
						
							| 8 |  | dchrisum0.b | ⊢ ( 𝜑  →  𝑋  ∈  𝑊 ) | 
						
							| 9 |  | dchrisum0lem1.f | ⊢ 𝐹  =  ( 𝑎  ∈  ℕ  ↦  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) )  /  ( √ ‘ 𝑎 ) ) ) | 
						
							| 10 |  | dchrisum0.c | ⊢ ( 𝜑  →  𝐶  ∈  ( 0 [,) +∞ ) ) | 
						
							| 11 |  | dchrisum0.s | ⊢ ( 𝜑  →  seq 1 (  +  ,  𝐹 )  ⇝  𝑆 ) | 
						
							| 12 |  | dchrisum0.1 | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 (  +  ,  𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) )  −  𝑆 ) )  ≤  ( 𝐶  /  ( √ ‘ 𝑦 ) ) ) | 
						
							| 13 |  | dchrisum0lem2.h | ⊢ 𝐻  =  ( 𝑦  ∈  ℝ+  ↦  ( Σ 𝑑  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( 1  /  ( √ ‘ 𝑑 ) )  −  ( 2  ·  ( √ ‘ 𝑦 ) ) ) ) | 
						
							| 14 |  | dchrisum0lem2.u | ⊢ ( 𝜑  →  𝐻  ⇝𝑟  𝑈 ) | 
						
							| 15 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∈  Fin ) | 
						
							| 16 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝜑 ) | 
						
							| 17 |  | elfznn | ⊢ ( 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑚  ∈  ℕ ) | 
						
							| 18 | 7 | ssrab3 | ⊢ 𝑊  ⊆  ( 𝐷  ∖  {  1  } ) | 
						
							| 19 | 18 8 | sselid | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝐷  ∖  {  1  } ) ) | 
						
							| 20 | 19 | eldifad | ⊢ ( 𝜑  →  𝑋  ∈  𝐷 ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝑋  ∈  𝐷 ) | 
						
							| 22 |  | nnz | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ∈  ℤ ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝑚  ∈  ℤ ) | 
						
							| 24 | 4 1 5 2 21 23 | dchrzrhcl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  ∈  ℂ ) | 
						
							| 25 |  | nnrp | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ∈  ℝ+ ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝑚  ∈  ℝ+ ) | 
						
							| 27 | 26 | rpsqrtcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( √ ‘ 𝑚 )  ∈  ℝ+ ) | 
						
							| 28 | 27 | rpcnd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( √ ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 29 | 27 | rpne0d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( √ ‘ 𝑚 )  ≠  0 ) | 
						
							| 30 | 24 28 29 | divcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ∈  ℂ ) | 
						
							| 31 | 16 17 30 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ∈  ℂ ) | 
						
							| 32 | 15 31 | fsumcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ∈  ℂ ) | 
						
							| 33 |  | rlimcl | ⊢ ( 𝐻  ⇝𝑟  𝑈  →  𝑈  ∈  ℂ ) | 
						
							| 34 | 14 33 | syl | ⊢ ( 𝜑  →  𝑈  ∈  ℂ ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑈  ∈  ℂ ) | 
						
							| 36 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 37 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 38 |  | df-ioo | ⊢ (,)  =  ( 𝑥  ∈  ℝ* ,  𝑦  ∈  ℝ*  ↦  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  <  𝑧  ∧  𝑧  <  𝑦 ) } ) | 
						
							| 39 |  | df-ico | ⊢ [,)  =  ( 𝑥  ∈  ℝ* ,  𝑦  ∈  ℝ*  ↦  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } ) | 
						
							| 40 |  | xrltletr | ⊢ ( ( 0  ∈  ℝ*  ∧  1  ∈  ℝ*  ∧  𝑤  ∈  ℝ* )  →  ( ( 0  <  1  ∧  1  ≤  𝑤 )  →  0  <  𝑤 ) ) | 
						
							| 41 | 38 39 40 | ixxss1 | ⊢ ( ( 0  ∈  ℝ*  ∧  0  <  1 )  →  ( 1 [,) +∞ )  ⊆  ( 0 (,) +∞ ) ) | 
						
							| 42 | 36 37 41 | mp2an | ⊢ ( 1 [,) +∞ )  ⊆  ( 0 (,) +∞ ) | 
						
							| 43 |  | ioorp | ⊢ ( 0 (,) +∞ )  =  ℝ+ | 
						
							| 44 | 42 43 | sseqtri | ⊢ ( 1 [,) +∞ )  ⊆  ℝ+ | 
						
							| 45 |  | resmpt | ⊢ ( ( 1 [,) +∞ )  ⊆  ℝ+  →  ( ( 𝑥  ∈  ℝ+  ↦  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) ) )  ↾  ( 1 [,) +∞ ) )  =  ( 𝑥  ∈  ( 1 [,) +∞ )  ↦  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) ) ) ) | 
						
							| 46 | 44 45 | ax-mp | ⊢ ( ( 𝑥  ∈  ℝ+  ↦  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) ) )  ↾  ( 1 [,) +∞ ) )  =  ( 𝑥  ∈  ( 1 [,) +∞ )  ↦  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) ) ) | 
						
							| 47 | 44 | sseli | ⊢ ( 𝑥  ∈  ( 1 [,) +∞ )  →  𝑥  ∈  ℝ+ ) | 
						
							| 48 | 17 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 49 |  | 2fveq3 | ⊢ ( 𝑎  =  𝑚  →  ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) )  =  ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) | 
						
							| 50 |  | fveq2 | ⊢ ( 𝑎  =  𝑚  →  ( √ ‘ 𝑎 )  =  ( √ ‘ 𝑚 ) ) | 
						
							| 51 | 49 50 | oveq12d | ⊢ ( 𝑎  =  𝑚  →  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) )  /  ( √ ‘ 𝑎 ) )  =  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) ) ) | 
						
							| 52 |  | ovex | ⊢ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) )  /  ( √ ‘ 𝑎 ) )  ∈  V | 
						
							| 53 | 51 9 52 | fvmpt3i | ⊢ ( 𝑚  ∈  ℕ  →  ( 𝐹 ‘ 𝑚 )  =  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) ) ) | 
						
							| 54 | 48 53 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝐹 ‘ 𝑚 )  =  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) ) ) | 
						
							| 55 | 47 54 | sylanl2 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝐹 ‘ 𝑚 )  =  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) ) ) | 
						
							| 56 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 57 |  | elicopnf | ⊢ ( 1  ∈  ℝ  →  ( 𝑥  ∈  ( 1 [,) +∞ )  ↔  ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 ) ) ) | 
						
							| 58 | 56 57 | ax-mp | ⊢ ( 𝑥  ∈  ( 1 [,) +∞ )  ↔  ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 ) ) | 
						
							| 59 |  | flge1nn | ⊢ ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  →  ( ⌊ ‘ 𝑥 )  ∈  ℕ ) | 
						
							| 60 | 58 59 | sylbi | ⊢ ( 𝑥  ∈  ( 1 [,) +∞ )  →  ( ⌊ ‘ 𝑥 )  ∈  ℕ ) | 
						
							| 61 | 60 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  →  ( ⌊ ‘ 𝑥 )  ∈  ℕ ) | 
						
							| 62 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 63 | 61 62 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  →  ( ⌊ ‘ 𝑥 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 64 | 47 31 | sylanl2 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ∈  ℂ ) | 
						
							| 65 | 55 63 64 | fsumser | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  =  ( seq 1 (  +  ,  𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) | 
						
							| 66 | 65 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 [,) +∞ )  ↦  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) ) )  =  ( 𝑥  ∈  ( 1 [,) +∞ )  ↦  ( seq 1 (  +  ,  𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) ) | 
						
							| 67 | 46 66 | eqtrid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℝ+  ↦  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) ) )  ↾  ( 1 [,) +∞ ) )  =  ( 𝑥  ∈  ( 1 [,) +∞ )  ↦  ( seq 1 (  +  ,  𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) ) | 
						
							| 68 |  | fveq2 | ⊢ ( 𝑚  =  ( ⌊ ‘ 𝑥 )  →  ( seq 1 (  +  ,  𝐹 ) ‘ 𝑚 )  =  ( seq 1 (  +  ,  𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) | 
						
							| 69 |  | rpssre | ⊢ ℝ+  ⊆  ℝ | 
						
							| 70 | 69 | a1i | ⊢ ( 𝜑  →  ℝ+  ⊆  ℝ ) | 
						
							| 71 | 44 70 | sstrid | ⊢ ( 𝜑  →  ( 1 [,) +∞ )  ⊆  ℝ ) | 
						
							| 72 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 73 | 51 | cbvmptv | ⊢ ( 𝑎  ∈  ℕ  ↦  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) )  /  ( √ ‘ 𝑎 ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) ) ) | 
						
							| 74 | 9 73 | eqtri | ⊢ 𝐹  =  ( 𝑚  ∈  ℕ  ↦  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) ) ) | 
						
							| 75 | 30 74 | fmptd | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ ℂ ) | 
						
							| 76 | 75 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝐹 ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 77 | 62 72 76 | serf | ⊢ ( 𝜑  →  seq 1 (  +  ,  𝐹 ) : ℕ ⟶ ℂ ) | 
						
							| 78 | 77 | feqmptd | ⊢ ( 𝜑  →  seq 1 (  +  ,  𝐹 )  =  ( 𝑚  ∈  ℕ  ↦  ( seq 1 (  +  ,  𝐹 ) ‘ 𝑚 ) ) ) | 
						
							| 79 | 78 11 | eqbrtrrd | ⊢ ( 𝜑  →  ( 𝑚  ∈  ℕ  ↦  ( seq 1 (  +  ,  𝐹 ) ‘ 𝑚 ) )  ⇝  𝑆 ) | 
						
							| 80 | 77 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( seq 1 (  +  ,  𝐹 ) ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 81 | 58 | simprbi | ⊢ ( 𝑥  ∈  ( 1 [,) +∞ )  →  1  ≤  𝑥 ) | 
						
							| 82 | 81 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  →  1  ≤  𝑥 ) | 
						
							| 83 | 62 68 71 72 79 80 82 | climrlim2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 [,) +∞ )  ↦  ( seq 1 (  +  ,  𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) )  ⇝𝑟  𝑆 ) | 
						
							| 84 |  | rlimo1 | ⊢ ( ( 𝑥  ∈  ( 1 [,) +∞ )  ↦  ( seq 1 (  +  ,  𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) )  ⇝𝑟  𝑆  →  ( 𝑥  ∈  ( 1 [,) +∞ )  ↦  ( seq 1 (  +  ,  𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 85 | 83 84 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 [,) +∞ )  ↦  ( seq 1 (  +  ,  𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 86 | 67 85 | eqeltrd | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℝ+  ↦  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) ) )  ↾  ( 1 [,) +∞ ) )  ∈  𝑂(1) ) | 
						
							| 87 | 32 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ+  ↦  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) ) ) : ℝ+ ⟶ ℂ ) | 
						
							| 88 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 89 | 87 70 88 | o1resb | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℝ+  ↦  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) ) )  ∈  𝑂(1)  ↔  ( ( 𝑥  ∈  ℝ+  ↦  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) ) )  ↾  ( 1 [,) +∞ ) )  ∈  𝑂(1) ) ) | 
						
							| 90 | 86 89 | mpbird | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ+  ↦  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) ) )  ∈  𝑂(1) ) | 
						
							| 91 |  | o1const | ⊢ ( ( ℝ+  ⊆  ℝ  ∧  𝑈  ∈  ℂ )  →  ( 𝑥  ∈  ℝ+  ↦  𝑈 )  ∈  𝑂(1) ) | 
						
							| 92 | 69 34 91 | sylancr | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ+  ↦  𝑈 )  ∈  𝑂(1) ) | 
						
							| 93 | 32 35 90 92 | o1mul2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  𝑈 ) )  ∈  𝑂(1) ) | 
						
							| 94 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ∈  ℝ+ ) | 
						
							| 95 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 96 |  | rpexpcl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  2  ∈  ℤ )  →  ( 𝑥 ↑ 2 )  ∈  ℝ+ ) | 
						
							| 97 | 94 95 96 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 𝑥 ↑ 2 )  ∈  ℝ+ ) | 
						
							| 98 | 17 | nnrpd | ⊢ ( 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑚  ∈  ℝ+ ) | 
						
							| 99 |  | rpdivcl | ⊢ ( ( ( 𝑥 ↑ 2 )  ∈  ℝ+  ∧  𝑚  ∈  ℝ+ )  →  ( ( 𝑥 ↑ 2 )  /  𝑚 )  ∈  ℝ+ ) | 
						
							| 100 | 97 98 99 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 𝑥 ↑ 2 )  /  𝑚 )  ∈  ℝ+ ) | 
						
							| 101 | 13 | divsqrsumf | ⊢ 𝐻 : ℝ+ ⟶ ℝ | 
						
							| 102 | 101 | ffvelcdmi | ⊢ ( ( ( 𝑥 ↑ 2 )  /  𝑚 )  ∈  ℝ+  →  ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  ∈  ℝ ) | 
						
							| 103 | 100 102 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  ∈  ℝ ) | 
						
							| 104 | 103 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  ∈  ℂ ) | 
						
							| 105 | 31 104 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) ) )  ∈  ℂ ) | 
						
							| 106 | 15 105 | fsumcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) ) )  ∈  ℂ ) | 
						
							| 107 | 32 35 | mulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  𝑈 )  ∈  ℂ ) | 
						
							| 108 | 14 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝐻  ⇝𝑟  𝑈 ) | 
						
							| 109 | 108 33 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑈  ∈  ℂ ) | 
						
							| 110 | 31 109 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  𝑈 )  ∈  ℂ ) | 
						
							| 111 | 15 105 110 | fsumsub | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) ) )  −  ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  𝑈 ) )  =  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) ) )  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  𝑈 ) ) ) | 
						
							| 112 | 31 104 109 | subdid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  −  𝑈 ) )  =  ( ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) ) )  −  ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  𝑈 ) ) ) | 
						
							| 113 | 112 | sumeq2dv | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  −  𝑈 ) )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) ) )  −  ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  𝑈 ) ) ) | 
						
							| 114 | 15 35 31 | fsummulc1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  𝑈 )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  𝑈 ) ) | 
						
							| 115 | 114 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) ) )  −  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  𝑈 ) )  =  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) ) )  −  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  𝑈 ) ) ) | 
						
							| 116 | 111 113 115 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  −  𝑈 ) )  =  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) ) )  −  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  𝑈 ) ) ) | 
						
							| 117 | 116 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ+  ↦  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  −  𝑈 ) ) )  =  ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) ) )  −  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  𝑈 ) ) ) ) | 
						
							| 118 | 104 109 | subcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  −  𝑈 )  ∈  ℂ ) | 
						
							| 119 | 31 118 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  −  𝑈 ) )  ∈  ℂ ) | 
						
							| 120 | 15 119 | fsumcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  −  𝑈 ) )  ∈  ℂ ) | 
						
							| 121 | 120 | abscld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( abs ‘ Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  −  𝑈 ) ) )  ∈  ℝ ) | 
						
							| 122 | 119 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  −  𝑈 ) ) )  ∈  ℝ ) | 
						
							| 123 | 15 122 | fsumrecl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  −  𝑈 ) ) )  ∈  ℝ ) | 
						
							| 124 |  | 1red | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  1  ∈  ℝ ) | 
						
							| 125 | 15 119 | fsumabs | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( abs ‘ Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  −  𝑈 ) ) )  ≤  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  −  𝑈 ) ) ) ) | 
						
							| 126 |  | rprege0 | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) ) | 
						
							| 127 | 126 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) ) | 
						
							| 128 | 127 | simpld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ∈  ℝ ) | 
						
							| 129 |  | reflcl | ⊢ ( 𝑥  ∈  ℝ  →  ( ⌊ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 130 | 128 129 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ⌊ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 131 | 130 94 | rerpdivcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ( ⌊ ‘ 𝑥 )  /  𝑥 )  ∈  ℝ ) | 
						
							| 132 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑥  ∈  ℝ+ ) | 
						
							| 133 | 132 | rprecred | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1  /  𝑥 )  ∈  ℝ ) | 
						
							| 134 | 31 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) ) )  ∈  ℝ ) | 
						
							| 135 | 98 | rpsqrtcld | ⊢ ( 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  ( √ ‘ 𝑚 )  ∈  ℝ+ ) | 
						
							| 136 | 135 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( √ ‘ 𝑚 )  ∈  ℝ+ ) | 
						
							| 137 | 136 | rprecred | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1  /  ( √ ‘ 𝑚 ) )  ∈  ℝ ) | 
						
							| 138 | 118 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  −  𝑈 ) )  ∈  ℝ ) | 
						
							| 139 | 136 132 | rpdivcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( √ ‘ 𝑚 )  /  𝑥 )  ∈  ℝ+ ) | 
						
							| 140 | 69 139 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( √ ‘ 𝑚 )  /  𝑥 )  ∈  ℝ ) | 
						
							| 141 | 31 | absge0d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) ) ) ) | 
						
							| 142 | 118 | absge0d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( abs ‘ ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  −  𝑈 ) ) ) | 
						
							| 143 | 16 17 24 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  ∈  ℂ ) | 
						
							| 144 | 136 | rpcnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( √ ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 145 | 136 | rpne0d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( √ ‘ 𝑚 )  ≠  0 ) | 
						
							| 146 | 143 144 145 | absdivd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) ) )  =  ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) )  /  ( abs ‘ ( √ ‘ 𝑚 ) ) ) ) | 
						
							| 147 | 136 | rprege0d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( √ ‘ 𝑚 )  ∈  ℝ  ∧  0  ≤  ( √ ‘ 𝑚 ) ) ) | 
						
							| 148 |  | absid | ⊢ ( ( ( √ ‘ 𝑚 )  ∈  ℝ  ∧  0  ≤  ( √ ‘ 𝑚 ) )  →  ( abs ‘ ( √ ‘ 𝑚 ) )  =  ( √ ‘ 𝑚 ) ) | 
						
							| 149 | 147 148 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( √ ‘ 𝑚 ) )  =  ( √ ‘ 𝑚 ) ) | 
						
							| 150 | 149 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) )  /  ( abs ‘ ( √ ‘ 𝑚 ) ) )  =  ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) )  /  ( √ ‘ 𝑚 ) ) ) | 
						
							| 151 | 146 150 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) ) )  =  ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) )  /  ( √ ‘ 𝑚 ) ) ) | 
						
							| 152 | 143 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) )  ∈  ℝ ) | 
						
							| 153 |  | 1red | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  1  ∈  ℝ ) | 
						
							| 154 |  | eqid | ⊢ ( Base ‘ 𝑍 )  =  ( Base ‘ 𝑍 ) | 
						
							| 155 | 20 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑋  ∈  𝐷 ) | 
						
							| 156 | 3 | nnnn0d | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 157 | 1 154 2 | znzrhfo | ⊢ ( 𝑁  ∈  ℕ0  →  𝐿 : ℤ –onto→ ( Base ‘ 𝑍 ) ) | 
						
							| 158 |  | fof | ⊢ ( 𝐿 : ℤ –onto→ ( Base ‘ 𝑍 )  →  𝐿 : ℤ ⟶ ( Base ‘ 𝑍 ) ) | 
						
							| 159 | 156 157 158 | 3syl | ⊢ ( 𝜑  →  𝐿 : ℤ ⟶ ( Base ‘ 𝑍 ) ) | 
						
							| 160 | 159 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝐿 : ℤ ⟶ ( Base ‘ 𝑍 ) ) | 
						
							| 161 |  | elfzelz | ⊢ ( 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑚  ∈  ℤ ) | 
						
							| 162 |  | ffvelcdm | ⊢ ( ( 𝐿 : ℤ ⟶ ( Base ‘ 𝑍 )  ∧  𝑚  ∈  ℤ )  →  ( 𝐿 ‘ 𝑚 )  ∈  ( Base ‘ 𝑍 ) ) | 
						
							| 163 | 160 161 162 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝐿 ‘ 𝑚 )  ∈  ( Base ‘ 𝑍 ) ) | 
						
							| 164 | 4 5 1 154 155 163 | dchrabs2 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) )  ≤  1 ) | 
						
							| 165 | 152 153 136 164 | lediv1dd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) )  /  ( √ ‘ 𝑚 ) )  ≤  ( 1  /  ( √ ‘ 𝑚 ) ) ) | 
						
							| 166 | 151 165 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) ) )  ≤  ( 1  /  ( √ ‘ 𝑚 ) ) ) | 
						
							| 167 | 13 108 | divsqrtsum2 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  ( ( 𝑥 ↑ 2 )  /  𝑚 )  ∈  ℝ+ )  →  ( abs ‘ ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  −  𝑈 ) )  ≤  ( 1  /  ( √ ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) ) ) ) | 
						
							| 168 | 100 167 | mpdan | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  −  𝑈 ) )  ≤  ( 1  /  ( √ ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) ) ) ) | 
						
							| 169 | 97 | rprege0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ( 𝑥 ↑ 2 )  ∈  ℝ  ∧  0  ≤  ( 𝑥 ↑ 2 ) ) ) | 
						
							| 170 |  | sqrtdiv | ⊢ ( ( ( ( 𝑥 ↑ 2 )  ∈  ℝ  ∧  0  ≤  ( 𝑥 ↑ 2 ) )  ∧  𝑚  ∈  ℝ+ )  →  ( √ ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  =  ( ( √ ‘ ( 𝑥 ↑ 2 ) )  /  ( √ ‘ 𝑚 ) ) ) | 
						
							| 171 | 169 98 170 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( √ ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  =  ( ( √ ‘ ( 𝑥 ↑ 2 ) )  /  ( √ ‘ 𝑚 ) ) ) | 
						
							| 172 | 126 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 ) ) | 
						
							| 173 |  | sqrtsq | ⊢ ( ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 )  →  ( √ ‘ ( 𝑥 ↑ 2 ) )  =  𝑥 ) | 
						
							| 174 | 172 173 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( √ ‘ ( 𝑥 ↑ 2 ) )  =  𝑥 ) | 
						
							| 175 | 174 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( √ ‘ ( 𝑥 ↑ 2 ) )  /  ( √ ‘ 𝑚 ) )  =  ( 𝑥  /  ( √ ‘ 𝑚 ) ) ) | 
						
							| 176 | 171 175 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( √ ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  =  ( 𝑥  /  ( √ ‘ 𝑚 ) ) ) | 
						
							| 177 | 176 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1  /  ( √ ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) ) )  =  ( 1  /  ( 𝑥  /  ( √ ‘ 𝑚 ) ) ) ) | 
						
							| 178 |  | rpcnne0 | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 ) ) | 
						
							| 179 | 178 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 ) ) | 
						
							| 180 | 136 | rpcnne0d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( √ ‘ 𝑚 )  ∈  ℂ  ∧  ( √ ‘ 𝑚 )  ≠  0 ) ) | 
						
							| 181 |  | recdiv | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 )  ∧  ( ( √ ‘ 𝑚 )  ∈  ℂ  ∧  ( √ ‘ 𝑚 )  ≠  0 ) )  →  ( 1  /  ( 𝑥  /  ( √ ‘ 𝑚 ) ) )  =  ( ( √ ‘ 𝑚 )  /  𝑥 ) ) | 
						
							| 182 | 179 180 181 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1  /  ( 𝑥  /  ( √ ‘ 𝑚 ) ) )  =  ( ( √ ‘ 𝑚 )  /  𝑥 ) ) | 
						
							| 183 | 177 182 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1  /  ( √ ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) ) )  =  ( ( √ ‘ 𝑚 )  /  𝑥 ) ) | 
						
							| 184 | 168 183 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  −  𝑈 ) )  ≤  ( ( √ ‘ 𝑚 )  /  𝑥 ) ) | 
						
							| 185 | 134 137 138 140 141 142 166 184 | lemul12ad | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) ) )  ·  ( abs ‘ ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  −  𝑈 ) ) )  ≤  ( ( 1  /  ( √ ‘ 𝑚 ) )  ·  ( ( √ ‘ 𝑚 )  /  𝑥 ) ) ) | 
						
							| 186 | 31 118 | absmuld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  −  𝑈 ) ) )  =  ( ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) ) )  ·  ( abs ‘ ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  −  𝑈 ) ) ) ) | 
						
							| 187 |  | 1cnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  1  ∈  ℂ ) | 
						
							| 188 |  | dmdcan | ⊢ ( ( ( ( √ ‘ 𝑚 )  ∈  ℂ  ∧  ( √ ‘ 𝑚 )  ≠  0 )  ∧  ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 )  ∧  1  ∈  ℂ )  →  ( ( ( √ ‘ 𝑚 )  /  𝑥 )  ·  ( 1  /  ( √ ‘ 𝑚 ) ) )  =  ( 1  /  𝑥 ) ) | 
						
							| 189 | 180 179 187 188 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( √ ‘ 𝑚 )  /  𝑥 )  ·  ( 1  /  ( √ ‘ 𝑚 ) ) )  =  ( 1  /  𝑥 ) ) | 
						
							| 190 | 139 | rpcnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( √ ‘ 𝑚 )  /  𝑥 )  ∈  ℂ ) | 
						
							| 191 |  | reccl | ⊢ ( ( ( √ ‘ 𝑚 )  ∈  ℂ  ∧  ( √ ‘ 𝑚 )  ≠  0 )  →  ( 1  /  ( √ ‘ 𝑚 ) )  ∈  ℂ ) | 
						
							| 192 | 180 191 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1  /  ( √ ‘ 𝑚 ) )  ∈  ℂ ) | 
						
							| 193 | 190 192 | mulcomd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( √ ‘ 𝑚 )  /  𝑥 )  ·  ( 1  /  ( √ ‘ 𝑚 ) ) )  =  ( ( 1  /  ( √ ‘ 𝑚 ) )  ·  ( ( √ ‘ 𝑚 )  /  𝑥 ) ) ) | 
						
							| 194 | 189 193 | eqtr3d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1  /  𝑥 )  =  ( ( 1  /  ( √ ‘ 𝑚 ) )  ·  ( ( √ ‘ 𝑚 )  /  𝑥 ) ) ) | 
						
							| 195 | 185 186 194 | 3brtr4d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  −  𝑈 ) ) )  ≤  ( 1  /  𝑥 ) ) | 
						
							| 196 | 15 122 133 195 | fsumle | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  −  𝑈 ) ) )  ≤  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1  /  𝑥 ) ) | 
						
							| 197 |  | flge0nn0 | ⊢ ( ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 )  →  ( ⌊ ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 198 |  | hashfz1 | ⊢ ( ( ⌊ ‘ 𝑥 )  ∈  ℕ0  →  ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  =  ( ⌊ ‘ 𝑥 ) ) | 
						
							| 199 | 127 197 198 | 3syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  =  ( ⌊ ‘ 𝑥 ) ) | 
						
							| 200 | 199 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ·  ( 1  /  𝑥 ) )  =  ( ( ⌊ ‘ 𝑥 )  ·  ( 1  /  𝑥 ) ) ) | 
						
							| 201 | 94 | rpreccld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 1  /  𝑥 )  ∈  ℝ+ ) | 
						
							| 202 | 201 | rpcnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 1  /  𝑥 )  ∈  ℂ ) | 
						
							| 203 |  | fsumconst | ⊢ ( ( ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∈  Fin  ∧  ( 1  /  𝑥 )  ∈  ℂ )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1  /  𝑥 )  =  ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ·  ( 1  /  𝑥 ) ) ) | 
						
							| 204 | 15 202 203 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1  /  𝑥 )  =  ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ·  ( 1  /  𝑥 ) ) ) | 
						
							| 205 | 130 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ⌊ ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 206 | 178 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 ) ) | 
						
							| 207 | 206 | simpld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ∈  ℂ ) | 
						
							| 208 | 206 | simprd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ≠  0 ) | 
						
							| 209 | 205 207 208 | divrecd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ( ⌊ ‘ 𝑥 )  /  𝑥 )  =  ( ( ⌊ ‘ 𝑥 )  ·  ( 1  /  𝑥 ) ) ) | 
						
							| 210 | 200 204 209 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1  /  𝑥 )  =  ( ( ⌊ ‘ 𝑥 )  /  𝑥 ) ) | 
						
							| 211 | 196 210 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  −  𝑈 ) ) )  ≤  ( ( ⌊ ‘ 𝑥 )  /  𝑥 ) ) | 
						
							| 212 |  | flle | ⊢ ( 𝑥  ∈  ℝ  →  ( ⌊ ‘ 𝑥 )  ≤  𝑥 ) | 
						
							| 213 | 128 212 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ⌊ ‘ 𝑥 )  ≤  𝑥 ) | 
						
							| 214 | 128 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ∈  ℂ ) | 
						
							| 215 | 214 | mulridd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 𝑥  ·  1 )  =  𝑥 ) | 
						
							| 216 | 213 215 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ⌊ ‘ 𝑥 )  ≤  ( 𝑥  ·  1 ) ) | 
						
							| 217 |  | rpregt0 | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑥  ∈  ℝ  ∧  0  <  𝑥 ) ) | 
						
							| 218 | 217 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( 𝑥  ∈  ℝ  ∧  0  <  𝑥 ) ) | 
						
							| 219 |  | ledivmul | ⊢ ( ( ( ⌊ ‘ 𝑥 )  ∈  ℝ  ∧  1  ∈  ℝ  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  𝑥 ) )  →  ( ( ( ⌊ ‘ 𝑥 )  /  𝑥 )  ≤  1  ↔  ( ⌊ ‘ 𝑥 )  ≤  ( 𝑥  ·  1 ) ) ) | 
						
							| 220 | 130 124 218 219 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ( ( ⌊ ‘ 𝑥 )  /  𝑥 )  ≤  1  ↔  ( ⌊ ‘ 𝑥 )  ≤  ( 𝑥  ·  1 ) ) ) | 
						
							| 221 | 216 220 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ( ⌊ ‘ 𝑥 )  /  𝑥 )  ≤  1 ) | 
						
							| 222 | 123 131 124 211 221 | letrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  −  𝑈 ) ) )  ≤  1 ) | 
						
							| 223 | 121 123 124 125 222 | letrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( abs ‘ Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  −  𝑈 ) ) )  ≤  1 ) | 
						
							| 224 | 223 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ℝ+  ∧  1  ≤  𝑥 ) )  →  ( abs ‘ Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  −  𝑈 ) ) )  ≤  1 ) | 
						
							| 225 | 70 120 88 88 224 | elo1d | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ+  ↦  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) )  −  𝑈 ) ) )  ∈  𝑂(1) ) | 
						
							| 226 | 117 225 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) ) )  −  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  𝑈 ) ) )  ∈  𝑂(1) ) | 
						
							| 227 | 106 107 226 | o1dif | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ℝ+  ↦  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) ) ) )  ∈  𝑂(1)  ↔  ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  𝑈 ) )  ∈  𝑂(1) ) ) | 
						
							| 228 | 93 227 | mpbird | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ+  ↦  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) )  /  ( √ ‘ 𝑚 ) )  ·  ( 𝐻 ‘ ( ( 𝑥 ↑ 2 )  /  𝑚 ) ) ) )  ∈  𝑂(1) ) |