| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climrlim2.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | climrlim2.2 | ⊢ ( 𝑛  =  ( ⌊ ‘ 𝑥 )  →  𝐵  =  𝐶 ) | 
						
							| 3 |  | climrlim2.3 | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 4 |  | climrlim2.4 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 5 |  | climrlim2.5 | ⊢ ( 𝜑  →  ( 𝑛  ∈  𝑍  ↦  𝐵 )  ⇝  𝐷 ) | 
						
							| 6 |  | climrlim2.6 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝐵  ∈  ℂ ) | 
						
							| 7 |  | climrlim2.7 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑀  ≤  𝑥 ) | 
						
							| 8 |  | eluzelz | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑗  ∈  ℤ ) | 
						
							| 9 | 8 1 | eleq2s | ⊢ ( 𝑗  ∈  𝑍  →  𝑗  ∈  ℤ ) | 
						
							| 10 | 9 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑗  ≤  𝑥 ) )  →  𝑗  ∈  ℤ ) | 
						
							| 11 | 3 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ℝ ) | 
						
							| 12 | 11 | flcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ⌊ ‘ 𝑥 )  ∈  ℤ ) | 
						
							| 13 | 12 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  ∧  𝑥  ∈  𝐴 )  →  ( ⌊ ‘ 𝑥 )  ∈  ℤ ) | 
						
							| 14 | 13 | ad2ant2r | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑗  ≤  𝑥 ) )  →  ( ⌊ ‘ 𝑥 )  ∈  ℤ ) | 
						
							| 15 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑗  ≤  𝑥 ) )  →  𝑗  ≤  𝑥 ) | 
						
							| 16 | 11 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ℝ ) | 
						
							| 17 | 16 | ad2ant2r | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑗  ≤  𝑥 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 18 |  | flge | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑗  ∈  ℤ )  →  ( 𝑗  ≤  𝑥  ↔  𝑗  ≤  ( ⌊ ‘ 𝑥 ) ) ) | 
						
							| 19 | 17 10 18 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑗  ≤  𝑥 ) )  →  ( 𝑗  ≤  𝑥  ↔  𝑗  ≤  ( ⌊ ‘ 𝑥 ) ) ) | 
						
							| 20 | 15 19 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑗  ≤  𝑥 ) )  →  𝑗  ≤  ( ⌊ ‘ 𝑥 ) ) | 
						
							| 21 |  | eluz2 | ⊢ ( ( ⌊ ‘ 𝑥 )  ∈  ( ℤ≥ ‘ 𝑗 )  ↔  ( 𝑗  ∈  ℤ  ∧  ( ⌊ ‘ 𝑥 )  ∈  ℤ  ∧  𝑗  ≤  ( ⌊ ‘ 𝑥 ) ) ) | 
						
							| 22 | 10 14 20 21 | syl3anbrc | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑗  ≤  𝑥 ) )  →  ( ⌊ ‘ 𝑥 )  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 23 |  | simpr | ⊢ ( ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  −  𝐷 ) )  <  𝑦 )  →  ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  −  𝐷 ) )  <  𝑦 ) | 
						
							| 24 | 23 | ralimi | ⊢ ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  −  𝐷 ) )  <  𝑦 )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  −  𝐷 ) )  <  𝑦 ) | 
						
							| 25 |  | fveq2 | ⊢ ( 𝑘  =  ( ⌊ ‘ 𝑥 )  →  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  =  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) | 
						
							| 26 | 25 | fvoveq1d | ⊢ ( 𝑘  =  ( ⌊ ‘ 𝑥 )  →  ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  −  𝐷 ) )  =  ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) )  −  𝐷 ) ) ) | 
						
							| 27 | 26 | breq1d | ⊢ ( 𝑘  =  ( ⌊ ‘ 𝑥 )  →  ( ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  −  𝐷 ) )  <  𝑦  ↔  ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) )  −  𝐷 ) )  <  𝑦 ) ) | 
						
							| 28 | 27 | rspcv | ⊢ ( ( ⌊ ‘ 𝑥 )  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  −  𝐷 ) )  <  𝑦  →  ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) )  −  𝐷 ) )  <  𝑦 ) ) | 
						
							| 29 | 22 24 28 | syl2im | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑗  ≤  𝑥 ) )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  −  𝐷 ) )  <  𝑦 )  →  ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) )  −  𝐷 ) )  <  𝑦 ) ) | 
						
							| 30 |  | eqid | ⊢ ( 𝑛  ∈  𝑍  ↦  𝐵 )  =  ( 𝑛  ∈  𝑍  ↦  𝐵 ) | 
						
							| 31 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑀  ∈  ℤ ) | 
						
							| 32 |  | flge | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑀  ∈  ℤ )  →  ( 𝑀  ≤  𝑥  ↔  𝑀  ≤  ( ⌊ ‘ 𝑥 ) ) ) | 
						
							| 33 | 11 31 32 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝑀  ≤  𝑥  ↔  𝑀  ≤  ( ⌊ ‘ 𝑥 ) ) ) | 
						
							| 34 | 7 33 | mpbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑀  ≤  ( ⌊ ‘ 𝑥 ) ) | 
						
							| 35 |  | eluz2 | ⊢ ( ( ⌊ ‘ 𝑥 )  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  ( 𝑀  ∈  ℤ  ∧  ( ⌊ ‘ 𝑥 )  ∈  ℤ  ∧  𝑀  ≤  ( ⌊ ‘ 𝑥 ) ) ) | 
						
							| 36 | 31 12 34 35 | syl3anbrc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ⌊ ‘ 𝑥 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 37 | 36 1 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ⌊ ‘ 𝑥 )  ∈  𝑍 ) | 
						
							| 38 | 2 | eleq1d | ⊢ ( 𝑛  =  ( ⌊ ‘ 𝑥 )  →  ( 𝐵  ∈  ℂ  ↔  𝐶  ∈  ℂ ) ) | 
						
							| 39 | 6 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  𝑍 𝐵  ∈  ℂ ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ∀ 𝑛  ∈  𝑍 𝐵  ∈  ℂ ) | 
						
							| 41 | 38 40 37 | rspcdva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  ℂ ) | 
						
							| 42 | 30 2 37 41 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) )  =  𝐶 ) | 
						
							| 43 | 42 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) )  =  𝐶 ) | 
						
							| 44 | 43 | ad2ant2r | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑗  ≤  𝑥 ) )  →  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) )  =  𝐶 ) | 
						
							| 45 | 44 | fvoveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑗  ≤  𝑥 ) )  →  ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) )  −  𝐷 ) )  =  ( abs ‘ ( 𝐶  −  𝐷 ) ) ) | 
						
							| 46 | 45 | breq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑗  ≤  𝑥 ) )  →  ( ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) )  −  𝐷 ) )  <  𝑦  ↔  ( abs ‘ ( 𝐶  −  𝐷 ) )  <  𝑦 ) ) | 
						
							| 47 | 29 46 | sylibd | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑗  ≤  𝑥 ) )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  −  𝐷 ) )  <  𝑦 )  →  ( abs ‘ ( 𝐶  −  𝐷 ) )  <  𝑦 ) ) | 
						
							| 48 | 47 | expr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑗  ≤  𝑥  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  −  𝐷 ) )  <  𝑦 )  →  ( abs ‘ ( 𝐶  −  𝐷 ) )  <  𝑦 ) ) ) | 
						
							| 49 | 48 | com23 | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  ∧  𝑥  ∈  𝐴 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  −  𝐷 ) )  <  𝑦 )  →  ( 𝑗  ≤  𝑥  →  ( abs ‘ ( 𝐶  −  𝐷 ) )  <  𝑦 ) ) ) | 
						
							| 50 | 49 | ralrimdva | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  −  𝐷 ) )  <  𝑦 )  →  ∀ 𝑥  ∈  𝐴 ( 𝑗  ≤  𝑥  →  ( abs ‘ ( 𝐶  −  𝐷 ) )  <  𝑦 ) ) ) | 
						
							| 51 |  | eluzelre | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑗  ∈  ℝ ) | 
						
							| 52 | 51 1 | eleq2s | ⊢ ( 𝑗  ∈  𝑍  →  𝑗  ∈  ℝ ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  →  𝑗  ∈  ℝ ) | 
						
							| 54 | 50 53 | jctild | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  ∧  𝑗  ∈  𝑍 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  −  𝐷 ) )  <  𝑦 )  →  ( 𝑗  ∈  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑗  ≤  𝑥  →  ( abs ‘ ( 𝐶  −  𝐷 ) )  <  𝑦 ) ) ) ) | 
						
							| 55 | 54 | expimpd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  →  ( ( 𝑗  ∈  𝑍  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  −  𝐷 ) )  <  𝑦 ) )  →  ( 𝑗  ∈  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑗  ≤  𝑥  →  ( abs ‘ ( 𝐶  −  𝐷 ) )  <  𝑦 ) ) ) ) | 
						
							| 56 | 55 | reximdv2 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ+ )  →  ( ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  −  𝐷 ) )  <  𝑦 )  →  ∃ 𝑗  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑗  ≤  𝑥  →  ( abs ‘ ( 𝐶  −  𝐷 ) )  <  𝑦 ) ) ) | 
						
							| 57 | 56 | ralimdva | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  −  𝐷 ) )  <  𝑦 )  →  ∀ 𝑦  ∈  ℝ+ ∃ 𝑗  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑗  ≤  𝑥  →  ( abs ‘ ( 𝐶  −  𝐷 ) )  <  𝑦 ) ) ) | 
						
							| 58 | 57 | adantld | ⊢ ( 𝜑  →  ( ( 𝐷  ∈  ℂ  ∧  ∀ 𝑦  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  −  𝐷 ) )  <  𝑦 ) )  →  ∀ 𝑦  ∈  ℝ+ ∃ 𝑗  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑗  ≤  𝑥  →  ( abs ‘ ( 𝐶  −  𝐷 ) )  <  𝑦 ) ) ) | 
						
							| 59 |  | climrel | ⊢ Rel   ⇝ | 
						
							| 60 | 59 | brrelex1i | ⊢ ( ( 𝑛  ∈  𝑍  ↦  𝐵 )  ⇝  𝐷  →  ( 𝑛  ∈  𝑍  ↦  𝐵 )  ∈  V ) | 
						
							| 61 | 5 60 | syl | ⊢ ( 𝜑  →  ( 𝑛  ∈  𝑍  ↦  𝐵 )  ∈  V ) | 
						
							| 62 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  =  ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 ) ) | 
						
							| 63 | 1 4 61 62 | clim2 | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  𝑍  ↦  𝐵 )  ⇝  𝐷  ↔  ( 𝐷  ∈  ℂ  ∧  ∀ 𝑦  ∈  ℝ+ ∃ 𝑗  ∈  𝑍 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( abs ‘ ( ( ( 𝑛  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  −  𝐷 ) )  <  𝑦 ) ) ) ) | 
						
							| 64 | 41 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 𝐶  ∈  ℂ ) | 
						
							| 65 |  | climcl | ⊢ ( ( 𝑛  ∈  𝑍  ↦  𝐵 )  ⇝  𝐷  →  𝐷  ∈  ℂ ) | 
						
							| 66 | 5 65 | syl | ⊢ ( 𝜑  →  𝐷  ∈  ℂ ) | 
						
							| 67 | 64 3 66 | rlim2 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ⇝𝑟  𝐷  ↔  ∀ 𝑦  ∈  ℝ+ ∃ 𝑗  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑗  ≤  𝑥  →  ( abs ‘ ( 𝐶  −  𝐷 ) )  <  𝑦 ) ) ) | 
						
							| 68 | 58 63 67 | 3imtr4d | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  𝑍  ↦  𝐵 )  ⇝  𝐷  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ⇝𝑟  𝐷 ) ) | 
						
							| 69 | 5 68 | mpd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ⇝𝑟  𝐷 ) |