| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
| 2 |
|
rpvmasum.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑍 ) |
| 3 |
|
rpvmasum.a |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 4 |
|
rpvmasum2.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
| 5 |
|
rpvmasum2.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
| 6 |
|
rpvmasum2.1 |
⊢ 1 = ( 0g ‘ 𝐺 ) |
| 7 |
|
rpvmasum2.w |
⊢ 𝑊 = { 𝑦 ∈ ( 𝐷 ∖ { 1 } ) ∣ Σ 𝑚 ∈ ℕ ( ( 𝑦 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) = 0 } |
| 8 |
|
dchrisum0.b |
⊢ ( 𝜑 → 𝑋 ∈ 𝑊 ) |
| 9 |
|
eqid |
⊢ ( 𝑏 ∈ ℕ ↦ Σ 𝑦 ∈ { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑏 } ( 𝑋 ‘ ( 𝐿 ‘ 𝑦 ) ) ) = ( 𝑏 ∈ ℕ ↦ Σ 𝑦 ∈ { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑏 } ( 𝑋 ‘ ( 𝐿 ‘ 𝑦 ) ) ) |
| 10 |
7
|
ssrab3 |
⊢ 𝑊 ⊆ ( 𝐷 ∖ { 1 } ) |
| 11 |
|
difss |
⊢ ( 𝐷 ∖ { 1 } ) ⊆ 𝐷 |
| 12 |
10 11
|
sstri |
⊢ 𝑊 ⊆ 𝐷 |
| 13 |
12 8
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
| 14 |
1 2 3 4 5 6 7 8
|
dchrisum0re |
⊢ ( 𝜑 → 𝑋 : ( Base ‘ 𝑍 ) ⟶ ℝ ) |
| 15 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑚 · 𝑑 ) → ( √ ‘ 𝑘 ) = ( √ ‘ ( 𝑚 · 𝑑 ) ) ) |
| 16 |
15
|
oveq2d |
⊢ ( 𝑘 = ( 𝑚 · 𝑑 ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑘 ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) |
| 17 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ ) |
| 19 |
13
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘 } ) → 𝑋 ∈ 𝐷 ) |
| 20 |
|
elrabi |
⊢ ( 𝑚 ∈ { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘 } → 𝑚 ∈ ℕ ) |
| 21 |
20
|
nnzd |
⊢ ( 𝑚 ∈ { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘 } → 𝑚 ∈ ℤ ) |
| 22 |
21
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘 } ) → 𝑚 ∈ ℤ ) |
| 23 |
4 1 5 2 19 22
|
dchrzrhcl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘 } ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ∈ ℂ ) |
| 24 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑘 ∈ ℕ ) |
| 25 |
24
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑘 ∈ ℕ ) |
| 26 |
25
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑘 ∈ ℝ+ ) |
| 27 |
26
|
rpsqrtcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( √ ‘ 𝑘 ) ∈ ℝ+ ) |
| 28 |
27
|
rpcnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( √ ‘ 𝑘 ) ∈ ℂ ) |
| 29 |
28
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘 } ) → ( √ ‘ 𝑘 ) ∈ ℂ ) |
| 30 |
27
|
rpne0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( √ ‘ 𝑘 ) ≠ 0 ) |
| 31 |
30
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘 } ) → ( √ ‘ 𝑘 ) ≠ 0 ) |
| 32 |
23 29 31
|
divcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘 } ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑘 ) ) ∈ ℂ ) |
| 33 |
32
|
anasss |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑚 ∈ { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘 } ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑘 ) ) ∈ ℂ ) |
| 34 |
16 18 33
|
dvdsflsumcom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘 } ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑘 ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) |
| 35 |
1 2 3 4 5 6 9
|
dchrisum0fval |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑏 ∈ ℕ ↦ Σ 𝑦 ∈ { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑏 } ( 𝑋 ‘ ( 𝐿 ‘ 𝑦 ) ) ) ‘ 𝑘 ) = Σ 𝑚 ∈ { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘 } ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) |
| 36 |
25 35
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑏 ∈ ℕ ↦ Σ 𝑦 ∈ { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑏 } ( 𝑋 ‘ ( 𝐿 ‘ 𝑦 ) ) ) ‘ 𝑘 ) = Σ 𝑚 ∈ { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘 } ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) |
| 37 |
36
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( 𝑏 ∈ ℕ ↦ Σ 𝑦 ∈ { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑏 } ( 𝑋 ‘ ( 𝐿 ‘ 𝑦 ) ) ) ‘ 𝑘 ) / ( √ ‘ 𝑘 ) ) = ( Σ 𝑚 ∈ { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘 } ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑘 ) ) ) |
| 38 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 ... 𝑘 ) ∈ Fin ) |
| 39 |
|
dvdsssfz1 |
⊢ ( 𝑘 ∈ ℕ → { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘 } ⊆ ( 1 ... 𝑘 ) ) |
| 40 |
25 39
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘 } ⊆ ( 1 ... 𝑘 ) ) |
| 41 |
38 40
|
ssfid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘 } ∈ Fin ) |
| 42 |
41 28 23 30
|
fsumdivc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Σ 𝑚 ∈ { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘 } ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑘 ) ) = Σ 𝑚 ∈ { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘 } ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑘 ) ) ) |
| 43 |
37 42
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( 𝑏 ∈ ℕ ↦ Σ 𝑦 ∈ { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑏 } ( 𝑋 ‘ ( 𝐿 ‘ 𝑦 ) ) ) ‘ 𝑘 ) / ( √ ‘ 𝑘 ) ) = Σ 𝑚 ∈ { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘 } ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑘 ) ) ) |
| 44 |
43
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑏 ∈ ℕ ↦ Σ 𝑦 ∈ { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑏 } ( 𝑋 ‘ ( 𝐿 ‘ 𝑦 ) ) ) ‘ 𝑘 ) / ( √ ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑘 } ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑘 ) ) ) |
| 45 |
|
rprege0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
| 46 |
45
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
| 47 |
|
resqrtth |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( ( √ ‘ 𝑥 ) ↑ 2 ) = 𝑥 ) |
| 48 |
46 47
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( √ ‘ 𝑥 ) ↑ 2 ) = 𝑥 ) |
| 49 |
48
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ⌊ ‘ ( ( √ ‘ 𝑥 ) ↑ 2 ) ) = ( ⌊ ‘ 𝑥 ) ) |
| 50 |
49
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 1 ... ( ⌊ ‘ ( ( √ ‘ 𝑥 ) ↑ 2 ) ) ) = ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) |
| 51 |
48
|
fvoveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ⌊ ‘ ( ( ( √ ‘ 𝑥 ) ↑ 2 ) / 𝑚 ) ) = ( ⌊ ‘ ( 𝑥 / 𝑚 ) ) ) |
| 52 |
51
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 1 ... ( ⌊ ‘ ( ( ( √ ‘ 𝑥 ) ↑ 2 ) / 𝑚 ) ) ) = ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑚 ) ) ) ) |
| 53 |
52
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( ( √ ‘ 𝑥 ) ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) |
| 54 |
53
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( ( √ ‘ 𝑥 ) ↑ 2 ) ) ) ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( ( √ ‘ 𝑥 ) ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) |
| 55 |
50 54
|
sumeq12dv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( ( √ ‘ 𝑥 ) ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( ( √ ‘ 𝑥 ) ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) |
| 56 |
34 44 55
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑏 ∈ ℕ ↦ Σ 𝑦 ∈ { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑏 } ( 𝑋 ‘ ( 𝐿 ‘ 𝑦 ) ) ) ‘ 𝑘 ) / ( √ ‘ 𝑘 ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( ( √ ‘ 𝑥 ) ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( ( √ ‘ 𝑥 ) ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) |
| 57 |
56
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑏 ∈ ℕ ↦ Σ 𝑦 ∈ { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑏 } ( 𝑋 ‘ ( 𝐿 ‘ 𝑦 ) ) ) ‘ 𝑘 ) / ( √ ‘ 𝑘 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( ( √ ‘ 𝑥 ) ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( ( √ ‘ 𝑥 ) ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) ) |
| 58 |
|
rpsqrtcl |
⊢ ( 𝑥 ∈ ℝ+ → ( √ ‘ 𝑥 ) ∈ ℝ+ ) |
| 59 |
58
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( √ ‘ 𝑥 ) ∈ ℝ+ ) |
| 60 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ ( √ ‘ 𝑥 ) ) = ( 𝑥 ∈ ℝ+ ↦ ( √ ‘ 𝑥 ) ) ) |
| 61 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑧 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑧 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑧 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) = ( 𝑧 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑧 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑧 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) ) |
| 62 |
|
oveq1 |
⊢ ( 𝑧 = ( √ ‘ 𝑥 ) → ( 𝑧 ↑ 2 ) = ( ( √ ‘ 𝑥 ) ↑ 2 ) ) |
| 63 |
62
|
fveq2d |
⊢ ( 𝑧 = ( √ ‘ 𝑥 ) → ( ⌊ ‘ ( 𝑧 ↑ 2 ) ) = ( ⌊ ‘ ( ( √ ‘ 𝑥 ) ↑ 2 ) ) ) |
| 64 |
63
|
oveq2d |
⊢ ( 𝑧 = ( √ ‘ 𝑥 ) → ( 1 ... ( ⌊ ‘ ( 𝑧 ↑ 2 ) ) ) = ( 1 ... ( ⌊ ‘ ( ( √ ‘ 𝑥 ) ↑ 2 ) ) ) ) |
| 65 |
62
|
fvoveq1d |
⊢ ( 𝑧 = ( √ ‘ 𝑥 ) → ( ⌊ ‘ ( ( 𝑧 ↑ 2 ) / 𝑚 ) ) = ( ⌊ ‘ ( ( ( √ ‘ 𝑥 ) ↑ 2 ) / 𝑚 ) ) ) |
| 66 |
65
|
oveq2d |
⊢ ( 𝑧 = ( √ ‘ 𝑥 ) → ( 1 ... ( ⌊ ‘ ( ( 𝑧 ↑ 2 ) / 𝑚 ) ) ) = ( 1 ... ( ⌊ ‘ ( ( ( √ ‘ 𝑥 ) ↑ 2 ) / 𝑚 ) ) ) ) |
| 67 |
66
|
sumeq1d |
⊢ ( 𝑧 = ( √ ‘ 𝑥 ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑧 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( ( √ ‘ 𝑥 ) ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) |
| 68 |
67
|
adantr |
⊢ ( ( 𝑧 = ( √ ‘ 𝑥 ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑧 ↑ 2 ) ) ) ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑧 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( ( √ ‘ 𝑥 ) ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) |
| 69 |
64 68
|
sumeq12dv |
⊢ ( 𝑧 = ( √ ‘ 𝑥 ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑧 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑧 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( ( √ ‘ 𝑥 ) ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( ( √ ‘ 𝑥 ) ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) |
| 70 |
59 60 61 69
|
fmptco |
⊢ ( 𝜑 → ( ( 𝑧 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑧 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑧 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) ∘ ( 𝑥 ∈ ℝ+ ↦ ( √ ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( ( √ ‘ 𝑥 ) ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( ( √ ‘ 𝑥 ) ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) ) |
| 71 |
57 70
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑏 ∈ ℕ ↦ Σ 𝑦 ∈ { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑏 } ( 𝑋 ‘ ( 𝐿 ‘ 𝑦 ) ) ) ‘ 𝑘 ) / ( √ ‘ 𝑘 ) ) ) = ( ( 𝑧 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑧 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑧 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) ∘ ( 𝑥 ∈ ℝ+ ↦ ( √ ‘ 𝑥 ) ) ) ) |
| 72 |
|
eqid |
⊢ ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ) = ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ) |
| 73 |
1 2 3 4 5 6 7 8 72
|
dchrisum0lema |
⊢ ( 𝜑 → ∃ 𝑡 ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ) ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ) ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / ( √ ‘ 𝑦 ) ) ) ) |
| 74 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( 0 [,) +∞ ) ∧ ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ) ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ) ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / ( √ ‘ 𝑦 ) ) ) ) ) → 𝑁 ∈ ℕ ) |
| 75 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( 0 [,) +∞ ) ∧ ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ) ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ) ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / ( √ ‘ 𝑦 ) ) ) ) ) → 𝑋 ∈ 𝑊 ) |
| 76 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( 0 [,) +∞ ) ∧ ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ) ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ) ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / ( √ ‘ 𝑦 ) ) ) ) ) → 𝑐 ∈ ( 0 [,) +∞ ) ) |
| 77 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( 0 [,) +∞ ) ∧ ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ) ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ) ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / ( √ ‘ 𝑦 ) ) ) ) ) → seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ) ) ⇝ 𝑡 ) |
| 78 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( 0 [,) +∞ ) ∧ ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ) ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ) ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / ( √ ‘ 𝑦 ) ) ) ) ) → ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ) ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / ( √ ‘ 𝑦 ) ) ) |
| 79 |
1 2 74 4 5 6 7 75 72 76 77 78
|
dchrisum0lem3 |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ ( 0 [,) +∞ ) ∧ ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ) ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ) ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / ( √ ‘ 𝑦 ) ) ) ) ) → ( 𝑧 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑧 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑧 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) ∈ 𝑂(1) ) |
| 80 |
79
|
rexlimdvaa |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ) ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ) ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / ( √ ‘ 𝑦 ) ) ) → ( 𝑧 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑧 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑧 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) ∈ 𝑂(1) ) ) |
| 81 |
80
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑡 ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ) ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ) ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / ( √ ‘ 𝑦 ) ) ) → ( 𝑧 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑧 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑧 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) ∈ 𝑂(1) ) ) |
| 82 |
73 81
|
mpd |
⊢ ( 𝜑 → ( 𝑧 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑧 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑧 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) ∈ 𝑂(1) ) |
| 83 |
|
o1f |
⊢ ( ( 𝑧 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑧 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑧 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) ∈ 𝑂(1) → ( 𝑧 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑧 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑧 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) : dom ( 𝑧 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑧 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑧 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) ⟶ ℂ ) |
| 84 |
82 83
|
syl |
⊢ ( 𝜑 → ( 𝑧 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑧 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑧 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) : dom ( 𝑧 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑧 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑧 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) ⟶ ℂ ) |
| 85 |
|
sumex |
⊢ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑧 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑧 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ∈ V |
| 86 |
|
eqid |
⊢ ( 𝑧 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑧 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑧 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) = ( 𝑧 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑧 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑧 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) |
| 87 |
85 86
|
dmmpti |
⊢ dom ( 𝑧 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑧 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑧 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) = ℝ+ |
| 88 |
87
|
feq2i |
⊢ ( ( 𝑧 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑧 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑧 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) : dom ( 𝑧 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑧 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑧 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) ⟶ ℂ ↔ ( 𝑧 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑧 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑧 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) : ℝ+ ⟶ ℂ ) |
| 89 |
84 88
|
sylib |
⊢ ( 𝜑 → ( 𝑧 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑧 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑧 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) : ℝ+ ⟶ ℂ ) |
| 90 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 91 |
90
|
a1i |
⊢ ( 𝜑 → ℝ+ ⊆ ℝ ) |
| 92 |
|
resqcl |
⊢ ( 𝑡 ∈ ℝ → ( 𝑡 ↑ 2 ) ∈ ℝ ) |
| 93 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ+ ∧ ( 𝑡 ↑ 2 ) ≤ 𝑥 ) ) → 0 ∈ ℝ ) |
| 94 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ+ ∧ ( 𝑡 ↑ 2 ) ≤ 𝑥 ) ) → 𝑡 ∈ ℝ ) |
| 95 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ+ ∧ ( 𝑡 ↑ 2 ) ≤ 𝑥 ) ) ∧ 0 ≤ 𝑡 ) → ( 𝑡 ↑ 2 ) ≤ 𝑥 ) |
| 96 |
45
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ+ ∧ ( 𝑡 ↑ 2 ) ≤ 𝑥 ) ) → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
| 97 |
96
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ+ ∧ ( 𝑡 ↑ 2 ) ≤ 𝑥 ) ) ∧ 0 ≤ 𝑡 ) → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
| 98 |
97 47
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ+ ∧ ( 𝑡 ↑ 2 ) ≤ 𝑥 ) ) ∧ 0 ≤ 𝑡 ) → ( ( √ ‘ 𝑥 ) ↑ 2 ) = 𝑥 ) |
| 99 |
95 98
|
breqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ+ ∧ ( 𝑡 ↑ 2 ) ≤ 𝑥 ) ) ∧ 0 ≤ 𝑡 ) → ( 𝑡 ↑ 2 ) ≤ ( ( √ ‘ 𝑥 ) ↑ 2 ) ) |
| 100 |
94
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ+ ∧ ( 𝑡 ↑ 2 ) ≤ 𝑥 ) ) ∧ 0 ≤ 𝑡 ) → 𝑡 ∈ ℝ ) |
| 101 |
59
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( √ ‘ 𝑥 ) ∈ ℝ ) |
| 102 |
101
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ+ ∧ ( 𝑡 ↑ 2 ) ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ ℝ ) |
| 103 |
102
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ+ ∧ ( 𝑡 ↑ 2 ) ≤ 𝑥 ) ) ∧ 0 ≤ 𝑡 ) → ( √ ‘ 𝑥 ) ∈ ℝ ) |
| 104 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ+ ∧ ( 𝑡 ↑ 2 ) ≤ 𝑥 ) ) ∧ 0 ≤ 𝑡 ) → 0 ≤ 𝑡 ) |
| 105 |
|
sqrtge0 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → 0 ≤ ( √ ‘ 𝑥 ) ) |
| 106 |
96 105
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ+ ∧ ( 𝑡 ↑ 2 ) ≤ 𝑥 ) ) → 0 ≤ ( √ ‘ 𝑥 ) ) |
| 107 |
106
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ+ ∧ ( 𝑡 ↑ 2 ) ≤ 𝑥 ) ) ∧ 0 ≤ 𝑡 ) → 0 ≤ ( √ ‘ 𝑥 ) ) |
| 108 |
100 103 104 107
|
le2sqd |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ+ ∧ ( 𝑡 ↑ 2 ) ≤ 𝑥 ) ) ∧ 0 ≤ 𝑡 ) → ( 𝑡 ≤ ( √ ‘ 𝑥 ) ↔ ( 𝑡 ↑ 2 ) ≤ ( ( √ ‘ 𝑥 ) ↑ 2 ) ) ) |
| 109 |
99 108
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ+ ∧ ( 𝑡 ↑ 2 ) ≤ 𝑥 ) ) ∧ 0 ≤ 𝑡 ) → 𝑡 ≤ ( √ ‘ 𝑥 ) ) |
| 110 |
94
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ+ ∧ ( 𝑡 ↑ 2 ) ≤ 𝑥 ) ) ∧ 𝑡 ≤ 0 ) → 𝑡 ∈ ℝ ) |
| 111 |
|
0red |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ+ ∧ ( 𝑡 ↑ 2 ) ≤ 𝑥 ) ) ∧ 𝑡 ≤ 0 ) → 0 ∈ ℝ ) |
| 112 |
102
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ+ ∧ ( 𝑡 ↑ 2 ) ≤ 𝑥 ) ) ∧ 𝑡 ≤ 0 ) → ( √ ‘ 𝑥 ) ∈ ℝ ) |
| 113 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ+ ∧ ( 𝑡 ↑ 2 ) ≤ 𝑥 ) ) ∧ 𝑡 ≤ 0 ) → 𝑡 ≤ 0 ) |
| 114 |
106
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ+ ∧ ( 𝑡 ↑ 2 ) ≤ 𝑥 ) ) ∧ 𝑡 ≤ 0 ) → 0 ≤ ( √ ‘ 𝑥 ) ) |
| 115 |
110 111 112 113 114
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ+ ∧ ( 𝑡 ↑ 2 ) ≤ 𝑥 ) ) ∧ 𝑡 ≤ 0 ) → 𝑡 ≤ ( √ ‘ 𝑥 ) ) |
| 116 |
93 94 109 115
|
lecasei |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ+ ∧ ( 𝑡 ↑ 2 ) ≤ 𝑥 ) ) → 𝑡 ≤ ( √ ‘ 𝑥 ) ) |
| 117 |
116
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝑡 ↑ 2 ) ≤ 𝑥 → 𝑡 ≤ ( √ ‘ 𝑥 ) ) ) |
| 118 |
117
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ∀ 𝑥 ∈ ℝ+ ( ( 𝑡 ↑ 2 ) ≤ 𝑥 → 𝑡 ≤ ( √ ‘ 𝑥 ) ) ) |
| 119 |
|
breq1 |
⊢ ( 𝑐 = ( 𝑡 ↑ 2 ) → ( 𝑐 ≤ 𝑥 ↔ ( 𝑡 ↑ 2 ) ≤ 𝑥 ) ) |
| 120 |
119
|
rspceaimv |
⊢ ( ( ( 𝑡 ↑ 2 ) ∈ ℝ ∧ ∀ 𝑥 ∈ ℝ+ ( ( 𝑡 ↑ 2 ) ≤ 𝑥 → 𝑡 ≤ ( √ ‘ 𝑥 ) ) ) → ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ ℝ+ ( 𝑐 ≤ 𝑥 → 𝑡 ≤ ( √ ‘ 𝑥 ) ) ) |
| 121 |
92 118 120
|
syl2an2 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ ℝ+ ( 𝑐 ≤ 𝑥 → 𝑡 ≤ ( √ ‘ 𝑥 ) ) ) |
| 122 |
89 82 59 91 121
|
o1compt |
⊢ ( 𝜑 → ( ( 𝑧 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑧 ↑ 2 ) ) ) Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑧 ↑ 2 ) / 𝑚 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ ( 𝑚 · 𝑑 ) ) ) ) ∘ ( 𝑥 ∈ ℝ+ ↦ ( √ ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
| 123 |
71 122
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑏 ∈ ℕ ↦ Σ 𝑦 ∈ { 𝑖 ∈ ℕ ∣ 𝑖 ∥ 𝑏 } ( 𝑋 ‘ ( 𝐿 ‘ 𝑦 ) ) ) ‘ 𝑘 ) / ( √ ‘ 𝑘 ) ) ) ∈ 𝑂(1) ) |
| 124 |
1 2 3 4 5 6 9 13 14 123
|
dchrisum0fno1 |
⊢ ¬ 𝜑 |