Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|
2 |
|
rpvmasum.l |
|
3 |
|
rpvmasum.a |
|
4 |
|
rpvmasum2.g |
|
5 |
|
rpvmasum2.d |
|
6 |
|
rpvmasum2.1 |
|
7 |
|
rpvmasum2.w |
|
8 |
|
dchrisum0.b |
|
9 |
|
dchrisum0lem1.f |
|
10 |
|
dchrisum0.c |
|
11 |
|
dchrisum0.s |
|
12 |
|
dchrisum0.1 |
|
13 |
|
dchrisum0lem2.h |
|
14 |
|
dchrisum0lem2.u |
|
15 |
|
fzfid |
|
16 |
|
simpl |
|
17 |
|
elfznn |
|
18 |
7
|
ssrab3 |
|
19 |
18 8
|
sselid |
|
20 |
19
|
eldifad |
|
21 |
20
|
adantr |
|
22 |
|
nnz |
|
23 |
22
|
adantl |
|
24 |
4 1 5 2 21 23
|
dchrzrhcl |
|
25 |
|
nnrp |
|
26 |
25
|
adantl |
|
27 |
26
|
rpsqrtcld |
|
28 |
27
|
rpcnd |
|
29 |
27
|
rpne0d |
|
30 |
24 28 29
|
divcld |
|
31 |
16 17 30
|
syl2an |
|
32 |
15 31
|
fsumcl |
|
33 |
|
rlimcl |
|
34 |
14 33
|
syl |
|
35 |
34
|
adantr |
|
36 |
|
0xr |
|
37 |
|
0lt1 |
|
38 |
|
df-ioo |
|
39 |
|
df-ico |
|
40 |
|
xrltletr |
|
41 |
38 39 40
|
ixxss1 |
|
42 |
36 37 41
|
mp2an |
|
43 |
|
ioorp |
|
44 |
42 43
|
sseqtri |
|
45 |
|
resmpt |
|
46 |
44 45
|
ax-mp |
|
47 |
44
|
sseli |
|
48 |
17
|
adantl |
|
49 |
|
2fveq3 |
|
50 |
|
fveq2 |
|
51 |
49 50
|
oveq12d |
|
52 |
|
ovex |
|
53 |
51 9 52
|
fvmpt3i |
|
54 |
48 53
|
syl |
|
55 |
47 54
|
sylanl2 |
|
56 |
|
1re |
|
57 |
|
elicopnf |
|
58 |
56 57
|
ax-mp |
|
59 |
|
flge1nn |
|
60 |
58 59
|
sylbi |
|
61 |
60
|
adantl |
|
62 |
|
nnuz |
|
63 |
61 62
|
eleqtrdi |
|
64 |
47 31
|
sylanl2 |
|
65 |
55 63 64
|
fsumser |
|
66 |
65
|
mpteq2dva |
|
67 |
46 66
|
eqtrid |
|
68 |
|
fveq2 |
|
69 |
|
rpssre |
|
70 |
69
|
a1i |
|
71 |
44 70
|
sstrid |
|
72 |
|
1zzd |
|
73 |
51
|
cbvmptv |
|
74 |
9 73
|
eqtri |
|
75 |
30 74
|
fmptd |
|
76 |
75
|
ffvelrnda |
|
77 |
62 72 76
|
serf |
|
78 |
77
|
feqmptd |
|
79 |
78 11
|
eqbrtrrd |
|
80 |
77
|
ffvelrnda |
|
81 |
58
|
simprbi |
|
82 |
81
|
adantl |
|
83 |
62 68 71 72 79 80 82
|
climrlim2 |
|
84 |
|
rlimo1 |
|
85 |
83 84
|
syl |
|
86 |
67 85
|
eqeltrd |
|
87 |
32
|
fmpttd |
|
88 |
|
1red |
|
89 |
87 70 88
|
o1resb |
|
90 |
86 89
|
mpbird |
|
91 |
|
o1const |
|
92 |
69 34 91
|
sylancr |
|
93 |
32 35 90 92
|
o1mul2 |
|
94 |
|
simpr |
|
95 |
|
2z |
|
96 |
|
rpexpcl |
|
97 |
94 95 96
|
sylancl |
|
98 |
17
|
nnrpd |
|
99 |
|
rpdivcl |
|
100 |
97 98 99
|
syl2an |
|
101 |
13
|
divsqrsumf |
|
102 |
101
|
ffvelrni |
|
103 |
100 102
|
syl |
|
104 |
103
|
recnd |
|
105 |
31 104
|
mulcld |
|
106 |
15 105
|
fsumcl |
|
107 |
32 35
|
mulcld |
|
108 |
14
|
ad2antrr |
|
109 |
108 33
|
syl |
|
110 |
31 109
|
mulcld |
|
111 |
15 105 110
|
fsumsub |
|
112 |
31 104 109
|
subdid |
|
113 |
112
|
sumeq2dv |
|
114 |
15 35 31
|
fsummulc1 |
|
115 |
114
|
oveq2d |
|
116 |
111 113 115
|
3eqtr4d |
|
117 |
116
|
mpteq2dva |
|
118 |
104 109
|
subcld |
|
119 |
31 118
|
mulcld |
|
120 |
15 119
|
fsumcl |
|
121 |
120
|
abscld |
|
122 |
119
|
abscld |
|
123 |
15 122
|
fsumrecl |
|
124 |
|
1red |
|
125 |
15 119
|
fsumabs |
|
126 |
|
rprege0 |
|
127 |
126
|
adantl |
|
128 |
127
|
simpld |
|
129 |
|
reflcl |
|
130 |
128 129
|
syl |
|
131 |
130 94
|
rerpdivcld |
|
132 |
|
simplr |
|
133 |
132
|
rprecred |
|
134 |
31
|
abscld |
|
135 |
98
|
rpsqrtcld |
|
136 |
135
|
adantl |
|
137 |
136
|
rprecred |
|
138 |
118
|
abscld |
|
139 |
136 132
|
rpdivcld |
|
140 |
69 139
|
sselid |
|
141 |
31
|
absge0d |
|
142 |
118
|
absge0d |
|
143 |
16 17 24
|
syl2an |
|
144 |
136
|
rpcnd |
|
145 |
136
|
rpne0d |
|
146 |
143 144 145
|
absdivd |
|
147 |
136
|
rprege0d |
|
148 |
|
absid |
|
149 |
147 148
|
syl |
|
150 |
149
|
oveq2d |
|
151 |
146 150
|
eqtrd |
|
152 |
143
|
abscld |
|
153 |
|
1red |
|
154 |
|
eqid |
|
155 |
20
|
ad2antrr |
|
156 |
3
|
nnnn0d |
|
157 |
1 154 2
|
znzrhfo |
|
158 |
|
fof |
|
159 |
156 157 158
|
3syl |
|
160 |
159
|
adantr |
|
161 |
|
elfzelz |
|
162 |
|
ffvelrn |
|
163 |
160 161 162
|
syl2an |
|
164 |
4 5 1 154 155 163
|
dchrabs2 |
|
165 |
152 153 136 164
|
lediv1dd |
|
166 |
151 165
|
eqbrtrd |
|
167 |
13 108
|
divsqrtsum2 |
|
168 |
100 167
|
mpdan |
|
169 |
97
|
rprege0d |
|
170 |
|
sqrtdiv |
|
171 |
169 98 170
|
syl2an |
|
172 |
126
|
ad2antlr |
|
173 |
|
sqrtsq |
|
174 |
172 173
|
syl |
|
175 |
174
|
oveq1d |
|
176 |
171 175
|
eqtrd |
|
177 |
176
|
oveq2d |
|
178 |
|
rpcnne0 |
|
179 |
178
|
ad2antlr |
|
180 |
136
|
rpcnne0d |
|
181 |
|
recdiv |
|
182 |
179 180 181
|
syl2anc |
|
183 |
177 182
|
eqtrd |
|
184 |
168 183
|
breqtrd |
|
185 |
134 137 138 140 141 142 166 184
|
lemul12ad |
|
186 |
31 118
|
absmuld |
|
187 |
|
1cnd |
|
188 |
|
dmdcan |
|
189 |
180 179 187 188
|
syl3anc |
|
190 |
139
|
rpcnd |
|
191 |
|
reccl |
|
192 |
180 191
|
syl |
|
193 |
190 192
|
mulcomd |
|
194 |
189 193
|
eqtr3d |
|
195 |
185 186 194
|
3brtr4d |
|
196 |
15 122 133 195
|
fsumle |
|
197 |
|
flge0nn0 |
|
198 |
|
hashfz1 |
|
199 |
127 197 198
|
3syl |
|
200 |
199
|
oveq1d |
|
201 |
94
|
rpreccld |
|
202 |
201
|
rpcnd |
|
203 |
|
fsumconst |
|
204 |
15 202 203
|
syl2anc |
|
205 |
130
|
recnd |
|
206 |
178
|
adantl |
|
207 |
206
|
simpld |
|
208 |
206
|
simprd |
|
209 |
205 207 208
|
divrecd |
|
210 |
200 204 209
|
3eqtr4d |
|
211 |
196 210
|
breqtrd |
|
212 |
|
flle |
|
213 |
128 212
|
syl |
|
214 |
128
|
recnd |
|
215 |
214
|
mulid1d |
|
216 |
213 215
|
breqtrrd |
|
217 |
|
rpregt0 |
|
218 |
217
|
adantl |
|
219 |
|
ledivmul |
|
220 |
130 124 218 219
|
syl3anc |
|
221 |
216 220
|
mpbird |
|
222 |
123 131 124 211 221
|
letrd |
|
223 |
121 123 124 125 222
|
letrd |
|
224 |
223
|
adantrr |
|
225 |
70 120 88 88 224
|
elo1d |
|
226 |
117 225
|
eqeltrrd |
|
227 |
106 107 226
|
o1dif |
|
228 |
93 227
|
mpbird |
|