| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
| 2 |
|
rpvmasum.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑍 ) |
| 3 |
|
rpvmasum.a |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 4 |
|
rpvmasum.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
| 5 |
|
rpvmasum.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
| 6 |
|
rpvmasum.1 |
⊢ 1 = ( 0g ‘ 𝐺 ) |
| 7 |
|
dchrisum.b |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
| 8 |
|
dchrisum.n1 |
⊢ ( 𝜑 → 𝑋 ≠ 1 ) |
| 9 |
|
dchrisumn0.f |
⊢ 𝐹 = ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) |
| 10 |
|
oveq2 |
⊢ ( 𝑛 = 𝑥 → ( 1 / 𝑛 ) = ( 1 / 𝑥 ) ) |
| 11 |
|
1nn |
⊢ 1 ∈ ℕ |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ ) |
| 13 |
|
rpreccl |
⊢ ( 𝑛 ∈ ℝ+ → ( 1 / 𝑛 ) ∈ ℝ+ ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℝ+ ) → ( 1 / 𝑛 ) ∈ ℝ+ ) |
| 15 |
14
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℝ+ ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 16 |
|
simp3r |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → 𝑛 ≤ 𝑥 ) |
| 17 |
|
rpregt0 |
⊢ ( 𝑛 ∈ ℝ+ → ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) |
| 18 |
|
rpregt0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) |
| 19 |
|
lerec |
⊢ ( ( ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) → ( 𝑛 ≤ 𝑥 ↔ ( 1 / 𝑥 ) ≤ ( 1 / 𝑛 ) ) ) |
| 20 |
17 18 19
|
syl2an |
⊢ ( ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) → ( 𝑛 ≤ 𝑥 ↔ ( 1 / 𝑥 ) ≤ ( 1 / 𝑛 ) ) ) |
| 21 |
20
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → ( 𝑛 ≤ 𝑥 ↔ ( 1 / 𝑥 ) ≤ ( 1 / 𝑛 ) ) ) |
| 22 |
16 21
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → ( 1 / 𝑥 ) ≤ ( 1 / 𝑛 ) ) |
| 23 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 24 |
|
divrcnv |
⊢ ( 1 ∈ ℂ → ( 𝑛 ∈ ℝ+ ↦ ( 1 / 𝑛 ) ) ⇝𝑟 0 ) |
| 25 |
23 24
|
mp1i |
⊢ ( 𝜑 → ( 𝑛 ∈ ℝ+ ↦ ( 1 / 𝑛 ) ) ⇝𝑟 0 ) |
| 26 |
|
2fveq3 |
⊢ ( 𝑎 = 𝑛 → ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) = ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) |
| 27 |
|
oveq2 |
⊢ ( 𝑎 = 𝑛 → ( 1 / 𝑎 ) = ( 1 / 𝑛 ) ) |
| 28 |
26 27
|
oveq12d |
⊢ ( 𝑎 = 𝑛 → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / 𝑎 ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( 1 / 𝑛 ) ) ) |
| 29 |
28
|
cbvmptv |
⊢ ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / 𝑎 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( 1 / 𝑛 ) ) ) |
| 30 |
1 2 3 4 5 6 7 8 10 12 15 22 25 29
|
dchrisum |
⊢ ( 𝜑 → ∃ 𝑡 ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / 𝑎 ) ) ) ) ⇝ 𝑡 ∧ ∀ 𝑥 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / 𝑎 ) ) ) ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · ( 1 / 𝑥 ) ) ) ) |
| 31 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑋 ∈ 𝐷 ) |
| 32 |
|
nnz |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) |
| 33 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℤ ) |
| 34 |
4 1 5 2 31 33
|
dchrzrhcl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ∈ ℂ ) |
| 35 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
| 36 |
35
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
| 37 |
|
nnne0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) |
| 38 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ≠ 0 ) |
| 39 |
34 36 38
|
divrecd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) / 𝑛 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( 1 / 𝑛 ) ) ) |
| 40 |
39
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) / 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( 1 / 𝑛 ) ) ) ) |
| 41 |
|
id |
⊢ ( 𝑎 = 𝑛 → 𝑎 = 𝑛 ) |
| 42 |
26 41
|
oveq12d |
⊢ ( 𝑎 = 𝑛 → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) / 𝑛 ) ) |
| 43 |
42
|
cbvmptv |
⊢ ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) / 𝑛 ) ) |
| 44 |
9 43
|
eqtri |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) / 𝑛 ) ) |
| 45 |
40 44 29
|
3eqtr4g |
⊢ ( 𝜑 → 𝐹 = ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / 𝑎 ) ) ) ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) → 𝐹 = ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / 𝑎 ) ) ) ) |
| 47 |
46
|
seqeq3d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) → seq 1 ( + , 𝐹 ) = seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / 𝑎 ) ) ) ) ) |
| 48 |
47
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) → ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 ↔ seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / 𝑎 ) ) ) ) ⇝ 𝑡 ) ) |
| 49 |
|
2fveq3 |
⊢ ( 𝑦 = 𝑥 → ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) |
| 50 |
49
|
fvoveq1d |
⊢ ( 𝑦 = 𝑥 → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) = ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ) |
| 51 |
|
oveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑐 / 𝑦 ) = ( 𝑐 / 𝑥 ) ) |
| 52 |
50 51
|
breq12d |
⊢ ( 𝑦 = 𝑥 → ( ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / 𝑦 ) ↔ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 / 𝑥 ) ) ) |
| 53 |
52
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / 𝑦 ) ↔ ∀ 𝑥 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 / 𝑥 ) ) |
| 54 |
45
|
seqeq3d |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) = seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / 𝑎 ) ) ) ) ) |
| 55 |
54
|
fveq1d |
⊢ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) = ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / 𝑎 ) ) ) ) ‘ ( ⌊ ‘ 𝑥 ) ) ) |
| 56 |
55
|
fvoveq1d |
⊢ ( 𝜑 → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) = ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / 𝑎 ) ) ) ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ) |
| 57 |
56
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) = ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / 𝑎 ) ) ) ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ) |
| 58 |
|
elrege0 |
⊢ ( 𝑐 ∈ ( 0 [,) +∞ ) ↔ ( 𝑐 ∈ ℝ ∧ 0 ≤ 𝑐 ) ) |
| 59 |
58
|
simplbi |
⊢ ( 𝑐 ∈ ( 0 [,) +∞ ) → 𝑐 ∈ ℝ ) |
| 60 |
59
|
recnd |
⊢ ( 𝑐 ∈ ( 0 [,) +∞ ) → 𝑐 ∈ ℂ ) |
| 61 |
60
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → 𝑐 ∈ ℂ ) |
| 62 |
|
1re |
⊢ 1 ∈ ℝ |
| 63 |
|
elicopnf |
⊢ ( 1 ∈ ℝ → ( 𝑥 ∈ ( 1 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ) ) |
| 64 |
62 63
|
ax-mp |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ) |
| 65 |
64
|
simplbi |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → 𝑥 ∈ ℝ ) |
| 66 |
65
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → 𝑥 ∈ ℝ ) |
| 67 |
66
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → 𝑥 ∈ ℂ ) |
| 68 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → 0 ∈ ℝ ) |
| 69 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → 1 ∈ ℝ ) |
| 70 |
|
0lt1 |
⊢ 0 < 1 |
| 71 |
70
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → 0 < 1 ) |
| 72 |
64
|
simprbi |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → 1 ≤ 𝑥 ) |
| 73 |
72
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → 1 ≤ 𝑥 ) |
| 74 |
68 69 66 71 73
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → 0 < 𝑥 ) |
| 75 |
74
|
gt0ne0d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → 𝑥 ≠ 0 ) |
| 76 |
61 67 75
|
divrecd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → ( 𝑐 / 𝑥 ) = ( 𝑐 · ( 1 / 𝑥 ) ) ) |
| 77 |
57 76
|
breq12d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → ( ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 / 𝑥 ) ↔ ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / 𝑎 ) ) ) ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · ( 1 / 𝑥 ) ) ) ) |
| 78 |
77
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) → ( ∀ 𝑥 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 / 𝑥 ) ↔ ∀ 𝑥 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / 𝑎 ) ) ) ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · ( 1 / 𝑥 ) ) ) ) |
| 79 |
53 78
|
bitrid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) → ( ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / 𝑦 ) ↔ ∀ 𝑥 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / 𝑎 ) ) ) ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · ( 1 / 𝑥 ) ) ) ) |
| 80 |
48 79
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 0 [,) +∞ ) ) → ( ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / 𝑦 ) ) ↔ ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / 𝑎 ) ) ) ) ⇝ 𝑡 ∧ ∀ 𝑥 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / 𝑎 ) ) ) ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · ( 1 / 𝑥 ) ) ) ) ) |
| 81 |
80
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / 𝑦 ) ) ↔ ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / 𝑎 ) ) ) ) ⇝ 𝑡 ∧ ∀ 𝑥 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / 𝑎 ) ) ) ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · ( 1 / 𝑥 ) ) ) ) ) |
| 82 |
81
|
exbidv |
⊢ ( 𝜑 → ( ∃ 𝑡 ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / 𝑦 ) ) ↔ ∃ 𝑡 ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / 𝑎 ) ) ) ) ⇝ 𝑡 ∧ ∀ 𝑥 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( 1 / 𝑎 ) ) ) ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · ( 1 / 𝑥 ) ) ) ) ) |
| 83 |
30 82
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑡 ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 ∧ ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑡 ) ) ≤ ( 𝑐 / 𝑦 ) ) ) |