Metamath Proof Explorer


Theorem dchrisum

Description: If n e. [ M , +oo ) |-> A ( n ) is a positive decreasing function approaching zero, then the infinite sum sum_ n , X ( n ) A ( n ) is convergent, with the partial sum sum_ n <_ x , X ( n ) A ( n ) within O ( A ( M ) ) of the limit T . Lemma 9.4.1 of Shapiro, p. 377. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Hypotheses rpvmasum.z 𝑍 = ( ℤ/nℤ ‘ 𝑁 )
rpvmasum.l 𝐿 = ( ℤRHom ‘ 𝑍 )
rpvmasum.a ( 𝜑𝑁 ∈ ℕ )
rpvmasum.g 𝐺 = ( DChr ‘ 𝑁 )
rpvmasum.d 𝐷 = ( Base ‘ 𝐺 )
rpvmasum.1 1 = ( 0g𝐺 )
dchrisum.b ( 𝜑𝑋𝐷 )
dchrisum.n1 ( 𝜑𝑋1 )
dchrisum.2 ( 𝑛 = 𝑥𝐴 = 𝐵 )
dchrisum.3 ( 𝜑𝑀 ∈ ℕ )
dchrisum.4 ( ( 𝜑𝑛 ∈ ℝ+ ) → 𝐴 ∈ ℝ )
dchrisum.5 ( ( 𝜑 ∧ ( 𝑛 ∈ ℝ+𝑥 ∈ ℝ+ ) ∧ ( 𝑀𝑛𝑛𝑥 ) ) → 𝐵𝐴 )
dchrisum.6 ( 𝜑 → ( 𝑛 ∈ ℝ+𝐴 ) ⇝𝑟 0 )
dchrisum.7 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿𝑛 ) ) · 𝐴 ) )
Assertion dchrisum ( 𝜑 → ∃ 𝑡𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 ∧ ∀ 𝑥 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 rpvmasum.z 𝑍 = ( ℤ/nℤ ‘ 𝑁 )
2 rpvmasum.l 𝐿 = ( ℤRHom ‘ 𝑍 )
3 rpvmasum.a ( 𝜑𝑁 ∈ ℕ )
4 rpvmasum.g 𝐺 = ( DChr ‘ 𝑁 )
5 rpvmasum.d 𝐷 = ( Base ‘ 𝐺 )
6 rpvmasum.1 1 = ( 0g𝐺 )
7 dchrisum.b ( 𝜑𝑋𝐷 )
8 dchrisum.n1 ( 𝜑𝑋1 )
9 dchrisum.2 ( 𝑛 = 𝑥𝐴 = 𝐵 )
10 dchrisum.3 ( 𝜑𝑀 ∈ ℕ )
11 dchrisum.4 ( ( 𝜑𝑛 ∈ ℝ+ ) → 𝐴 ∈ ℝ )
12 dchrisum.5 ( ( 𝜑 ∧ ( 𝑛 ∈ ℝ+𝑥 ∈ ℝ+ ) ∧ ( 𝑀𝑛𝑛𝑥 ) ) → 𝐵𝐴 )
13 dchrisum.6 ( 𝜑 → ( 𝑛 ∈ ℝ+𝐴 ) ⇝𝑟 0 )
14 dchrisum.7 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿𝑛 ) ) · 𝐴 ) )
15 fzofi ( 0 ..^ 𝑁 ) ∈ Fin
16 fzofi ( 0 ..^ 𝑢 ) ∈ Fin
17 16 a1i ( 𝜑 → ( 0 ..^ 𝑢 ) ∈ Fin )
18 7 adantr ( ( 𝜑𝑚 ∈ ( 0 ..^ 𝑢 ) ) → 𝑋𝐷 )
19 elfzoelz ( 𝑚 ∈ ( 0 ..^ 𝑢 ) → 𝑚 ∈ ℤ )
20 19 adantl ( ( 𝜑𝑚 ∈ ( 0 ..^ 𝑢 ) ) → 𝑚 ∈ ℤ )
21 4 1 5 2 18 20 dchrzrhcl ( ( 𝜑𝑚 ∈ ( 0 ..^ 𝑢 ) ) → ( 𝑋 ‘ ( 𝐿𝑚 ) ) ∈ ℂ )
22 17 21 fsumcl ( 𝜑 → Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿𝑚 ) ) ∈ ℂ )
23 22 abscld ( 𝜑 → ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿𝑚 ) ) ) ∈ ℝ )
24 23 ralrimivw ( 𝜑 → ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿𝑚 ) ) ) ∈ ℝ )
25 fimaxre3 ( ( ( 0 ..^ 𝑁 ) ∈ Fin ∧ ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿𝑚 ) ) ) ∈ ℝ ) → ∃ 𝑟 ∈ ℝ ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿𝑚 ) ) ) ≤ 𝑟 )
26 15 24 25 sylancr ( 𝜑 → ∃ 𝑟 ∈ ℝ ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿𝑚 ) ) ) ≤ 𝑟 )
27 3 adantr ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿𝑚 ) ) ) ≤ 𝑟 ) ) → 𝑁 ∈ ℕ )
28 7 adantr ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿𝑚 ) ) ) ≤ 𝑟 ) ) → 𝑋𝐷 )
29 8 adantr ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿𝑚 ) ) ) ≤ 𝑟 ) ) → 𝑋1 )
30 10 adantr ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿𝑚 ) ) ) ≤ 𝑟 ) ) → 𝑀 ∈ ℕ )
31 11 adantlr ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿𝑚 ) ) ) ≤ 𝑟 ) ) ∧ 𝑛 ∈ ℝ+ ) → 𝐴 ∈ ℝ )
32 12 3adant1r ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿𝑚 ) ) ) ≤ 𝑟 ) ) ∧ ( 𝑛 ∈ ℝ+𝑥 ∈ ℝ+ ) ∧ ( 𝑀𝑛𝑛𝑥 ) ) → 𝐵𝐴 )
33 13 adantr ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿𝑚 ) ) ) ≤ 𝑟 ) ) → ( 𝑛 ∈ ℝ+𝐴 ) ⇝𝑟 0 )
34 simprl ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿𝑚 ) ) ) ≤ 𝑟 ) ) → 𝑟 ∈ ℝ )
35 simprr ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿𝑚 ) ) ) ≤ 𝑟 ) ) → ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿𝑚 ) ) ) ≤ 𝑟 )
36 2fveq3 ( 𝑚 = 𝑛 → ( 𝑋 ‘ ( 𝐿𝑚 ) ) = ( 𝑋 ‘ ( 𝐿𝑛 ) ) )
37 36 cbvsumv Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿𝑚 ) ) = Σ 𝑛 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿𝑛 ) )
38 oveq2 ( 𝑢 = 𝑖 → ( 0 ..^ 𝑢 ) = ( 0 ..^ 𝑖 ) )
39 38 sumeq1d ( 𝑢 = 𝑖 → Σ 𝑛 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿𝑛 ) ) = Σ 𝑛 ∈ ( 0 ..^ 𝑖 ) ( 𝑋 ‘ ( 𝐿𝑛 ) ) )
40 37 39 eqtrid ( 𝑢 = 𝑖 → Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿𝑚 ) ) = Σ 𝑛 ∈ ( 0 ..^ 𝑖 ) ( 𝑋 ‘ ( 𝐿𝑛 ) ) )
41 40 fveq2d ( 𝑢 = 𝑖 → ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿𝑚 ) ) ) = ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ 𝑖 ) ( 𝑋 ‘ ( 𝐿𝑛 ) ) ) )
42 41 breq1d ( 𝑢 = 𝑖 → ( ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿𝑚 ) ) ) ≤ 𝑟 ↔ ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ 𝑖 ) ( 𝑋 ‘ ( 𝐿𝑛 ) ) ) ≤ 𝑟 ) )
43 42 cbvralvw ( ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿𝑚 ) ) ) ≤ 𝑟 ↔ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ 𝑖 ) ( 𝑋 ‘ ( 𝐿𝑛 ) ) ) ≤ 𝑟 )
44 35 43 sylib ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿𝑚 ) ) ) ≤ 𝑟 ) ) → ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ 𝑖 ) ( 𝑋 ‘ ( 𝐿𝑛 ) ) ) ≤ 𝑟 )
45 1 2 27 4 5 6 28 29 9 30 31 32 33 14 34 44 dchrisumlem3 ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿𝑚 ) ) ) ≤ 𝑟 ) ) → ∃ 𝑡𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 ∧ ∀ 𝑥 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · 𝐵 ) ) )
46 26 45 rexlimddv ( 𝜑 → ∃ 𝑡𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 ∧ ∀ 𝑥 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · 𝐵 ) ) )