| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
| 2 |
|
rpvmasum.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑍 ) |
| 3 |
|
rpvmasum.a |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 4 |
|
rpvmasum.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
| 5 |
|
rpvmasum.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
| 6 |
|
rpvmasum.1 |
⊢ 1 = ( 0g ‘ 𝐺 ) |
| 7 |
|
dchrisum.b |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
| 8 |
|
dchrisum.n1 |
⊢ ( 𝜑 → 𝑋 ≠ 1 ) |
| 9 |
|
dchrisum.2 |
⊢ ( 𝑛 = 𝑥 → 𝐴 = 𝐵 ) |
| 10 |
|
dchrisum.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 11 |
|
dchrisum.4 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
| 12 |
|
dchrisum.5 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → 𝐵 ≤ 𝐴 ) |
| 13 |
|
dchrisum.6 |
⊢ ( 𝜑 → ( 𝑛 ∈ ℝ+ ↦ 𝐴 ) ⇝𝑟 0 ) |
| 14 |
|
dchrisum.7 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · 𝐴 ) ) |
| 15 |
|
fzofi |
⊢ ( 0 ..^ 𝑁 ) ∈ Fin |
| 16 |
|
fzofi |
⊢ ( 0 ..^ 𝑢 ) ∈ Fin |
| 17 |
16
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ 𝑢 ) ∈ Fin ) |
| 18 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ..^ 𝑢 ) ) → 𝑋 ∈ 𝐷 ) |
| 19 |
|
elfzoelz |
⊢ ( 𝑚 ∈ ( 0 ..^ 𝑢 ) → 𝑚 ∈ ℤ ) |
| 20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ..^ 𝑢 ) ) → 𝑚 ∈ ℤ ) |
| 21 |
4 1 5 2 18 20
|
dchrzrhcl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ..^ 𝑢 ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ∈ ℂ ) |
| 22 |
17 21
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ∈ ℂ ) |
| 23 |
22
|
abscld |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) ∈ ℝ ) |
| 24 |
23
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) ∈ ℝ ) |
| 25 |
|
fimaxre3 |
⊢ ( ( ( 0 ..^ 𝑁 ) ∈ Fin ∧ ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) ∈ ℝ ) → ∃ 𝑟 ∈ ℝ ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) ≤ 𝑟 ) |
| 26 |
15 24 25
|
sylancr |
⊢ ( 𝜑 → ∃ 𝑟 ∈ ℝ ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) ≤ 𝑟 ) |
| 27 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) ≤ 𝑟 ) ) → 𝑁 ∈ ℕ ) |
| 28 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) ≤ 𝑟 ) ) → 𝑋 ∈ 𝐷 ) |
| 29 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) ≤ 𝑟 ) ) → 𝑋 ≠ 1 ) |
| 30 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) ≤ 𝑟 ) ) → 𝑀 ∈ ℕ ) |
| 31 |
11
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) ≤ 𝑟 ) ) ∧ 𝑛 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
| 32 |
12
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) ≤ 𝑟 ) ) ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → 𝐵 ≤ 𝐴 ) |
| 33 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) ≤ 𝑟 ) ) → ( 𝑛 ∈ ℝ+ ↦ 𝐴 ) ⇝𝑟 0 ) |
| 34 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) ≤ 𝑟 ) ) → 𝑟 ∈ ℝ ) |
| 35 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) ≤ 𝑟 ) ) → ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) ≤ 𝑟 ) |
| 36 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑛 → ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) = ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) |
| 37 |
36
|
cbvsumv |
⊢ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) = Σ 𝑛 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) |
| 38 |
|
oveq2 |
⊢ ( 𝑢 = 𝑖 → ( 0 ..^ 𝑢 ) = ( 0 ..^ 𝑖 ) ) |
| 39 |
38
|
sumeq1d |
⊢ ( 𝑢 = 𝑖 → Σ 𝑛 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) = Σ 𝑛 ∈ ( 0 ..^ 𝑖 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) |
| 40 |
37 39
|
eqtrid |
⊢ ( 𝑢 = 𝑖 → Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) = Σ 𝑛 ∈ ( 0 ..^ 𝑖 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) |
| 41 |
40
|
fveq2d |
⊢ ( 𝑢 = 𝑖 → ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) = ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ 𝑖 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) |
| 42 |
41
|
breq1d |
⊢ ( 𝑢 = 𝑖 → ( ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) ≤ 𝑟 ↔ ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ 𝑖 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ≤ 𝑟 ) ) |
| 43 |
42
|
cbvralvw |
⊢ ( ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) ≤ 𝑟 ↔ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ 𝑖 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ≤ 𝑟 ) |
| 44 |
35 43
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) ≤ 𝑟 ) ) → ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ 𝑖 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ≤ 𝑟 ) |
| 45 |
1 2 27 4 5 6 28 29 9 30 31 32 33 14 34 44
|
dchrisumlem3 |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑚 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) ≤ 𝑟 ) ) → ∃ 𝑡 ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 ∧ ∀ 𝑥 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · 𝐵 ) ) ) |
| 46 |
26 45
|
rexlimddv |
⊢ ( 𝜑 → ∃ 𝑡 ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 ∧ ∀ 𝑥 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · 𝐵 ) ) ) |