| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
| 2 |
|
rpvmasum.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑍 ) |
| 3 |
|
rpvmasum.a |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 4 |
|
rpvmasum.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
| 5 |
|
rpvmasum.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
| 6 |
|
rpvmasum.1 |
⊢ 1 = ( 0g ‘ 𝐺 ) |
| 7 |
|
dchrisum.b |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
| 8 |
|
dchrisum.n1 |
⊢ ( 𝜑 → 𝑋 ≠ 1 ) |
| 9 |
|
dchrisum.2 |
⊢ ( 𝑛 = 𝑥 → 𝐴 = 𝐵 ) |
| 10 |
|
dchrisum.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 11 |
|
dchrisum.4 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
| 12 |
|
dchrisum.5 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → 𝐵 ≤ 𝐴 ) |
| 13 |
|
dchrisum.6 |
⊢ ( 𝜑 → ( 𝑛 ∈ ℝ+ ↦ 𝐴 ) ⇝𝑟 0 ) |
| 14 |
|
dchrisum.7 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · 𝐴 ) ) |
| 15 |
|
dchrisum.9 |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 16 |
|
dchrisum.10 |
⊢ ( 𝜑 → ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ≤ 𝑅 ) |
| 17 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 18 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝑖 ∈ ℕ ) |
| 20 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝑋 ∈ 𝐷 ) |
| 21 |
19
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝑖 ∈ ℤ ) |
| 22 |
4 1 5 2 20 21
|
dchrzrhcl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) ∈ ℂ ) |
| 23 |
11
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℝ ) |
| 24 |
|
nnrp |
⊢ ( 𝑖 ∈ ℕ → 𝑖 ∈ ℝ+ ) |
| 25 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 𝑖 / 𝑛 ⦌ 𝐴 |
| 26 |
25
|
nfel1 |
⊢ Ⅎ 𝑛 ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ ℝ |
| 27 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑖 → 𝐴 = ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) |
| 28 |
27
|
eleq1d |
⊢ ( 𝑛 = 𝑖 → ( 𝐴 ∈ ℝ ↔ ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ ℝ ) ) |
| 29 |
26 28
|
rspc |
⊢ ( 𝑖 ∈ ℝ+ → ( ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℝ → ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ ℝ ) ) |
| 30 |
29
|
impcom |
⊢ ( ( ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℝ ∧ 𝑖 ∈ ℝ+ ) → ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ ℝ ) |
| 31 |
23 24 30
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ ℝ ) |
| 32 |
31
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ ℂ ) |
| 33 |
22 32
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ∈ ℂ ) |
| 34 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑖 |
| 35 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) |
| 36 |
|
nfcv |
⊢ Ⅎ 𝑛 · |
| 37 |
35 36 25
|
nfov |
⊢ Ⅎ 𝑛 ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) |
| 38 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑖 → ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) = ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) ) |
| 39 |
38 27
|
oveq12d |
⊢ ( 𝑛 = 𝑖 → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · 𝐴 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) |
| 40 |
34 37 39 14
|
fvmptf |
⊢ ( ( 𝑖 ∈ ℕ ∧ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ∈ ℂ ) → ( 𝐹 ‘ 𝑖 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) |
| 41 |
19 33 40
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝐹 ‘ 𝑖 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) |
| 42 |
41 33
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝐹 ‘ 𝑖 ) ∈ ℂ ) |
| 43 |
17 18 42
|
serf |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℂ ) |
| 44 |
43
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ∈ ℂ ) |
| 45 |
11
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
| 46 |
45
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℂ ) |
| 47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℂ ) |
| 48 |
|
id |
⊢ ( 𝑒 ∈ ℝ+ → 𝑒 ∈ ℝ+ ) |
| 49 |
|
2re |
⊢ 2 ∈ ℝ |
| 50 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( 2 · 𝑅 ) ∈ ℝ ) |
| 51 |
49 15 50
|
sylancr |
⊢ ( 𝜑 → ( 2 · 𝑅 ) ∈ ℝ ) |
| 52 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 𝑁 ) ↔ 𝑁 ∈ ℕ ) |
| 53 |
3 52
|
sylibr |
⊢ ( 𝜑 → 0 ∈ ( 0 ..^ 𝑁 ) ) |
| 54 |
|
oveq2 |
⊢ ( 𝑢 = 0 → ( 0 ..^ 𝑢 ) = ( 0 ..^ 0 ) ) |
| 55 |
|
fzo0 |
⊢ ( 0 ..^ 0 ) = ∅ |
| 56 |
54 55
|
eqtrdi |
⊢ ( 𝑢 = 0 → ( 0 ..^ 𝑢 ) = ∅ ) |
| 57 |
56
|
sumeq1d |
⊢ ( 𝑢 = 0 → Σ 𝑛 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) = Σ 𝑛 ∈ ∅ ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) |
| 58 |
|
sum0 |
⊢ Σ 𝑛 ∈ ∅ ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) = 0 |
| 59 |
57 58
|
eqtrdi |
⊢ ( 𝑢 = 0 → Σ 𝑛 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) = 0 ) |
| 60 |
59
|
abs00bd |
⊢ ( 𝑢 = 0 → ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) = 0 ) |
| 61 |
60
|
breq1d |
⊢ ( 𝑢 = 0 → ( ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ≤ 𝑅 ↔ 0 ≤ 𝑅 ) ) |
| 62 |
61
|
rspcv |
⊢ ( 0 ∈ ( 0 ..^ 𝑁 ) → ( ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ≤ 𝑅 → 0 ≤ 𝑅 ) ) |
| 63 |
53 16 62
|
sylc |
⊢ ( 𝜑 → 0 ≤ 𝑅 ) |
| 64 |
|
0le2 |
⊢ 0 ≤ 2 |
| 65 |
|
mulge0 |
⊢ ( ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) ∧ ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) ) → 0 ≤ ( 2 · 𝑅 ) ) |
| 66 |
49 64 65
|
mpanl12 |
⊢ ( ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) → 0 ≤ ( 2 · 𝑅 ) ) |
| 67 |
15 63 66
|
syl2anc |
⊢ ( 𝜑 → 0 ≤ ( 2 · 𝑅 ) ) |
| 68 |
51 67
|
ge0p1rpd |
⊢ ( 𝜑 → ( ( 2 · 𝑅 ) + 1 ) ∈ ℝ+ ) |
| 69 |
|
rpdivcl |
⊢ ( ( 𝑒 ∈ ℝ+ ∧ ( ( 2 · 𝑅 ) + 1 ) ∈ ℝ+ ) → ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ∈ ℝ+ ) |
| 70 |
48 68 69
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ∈ ℝ+ ) |
| 71 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ( 𝑛 ∈ ℝ+ ↦ 𝐴 ) ⇝𝑟 0 ) |
| 72 |
47 70 71
|
rlimi |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ∃ 𝑚 ∈ ℝ ∀ 𝑛 ∈ ℝ+ ( 𝑚 ≤ 𝑛 → ( abs ‘ ( 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ) ) |
| 73 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → 𝑚 ∈ ℝ ) |
| 74 |
10
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 75 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → 𝑀 ∈ ℝ ) |
| 76 |
73 75
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ℝ ) |
| 77 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → 0 ∈ ℝ ) |
| 78 |
10
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑀 ) |
| 79 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → 0 < 𝑀 ) |
| 80 |
|
max1 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑚 ∈ ℝ ) → 𝑀 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) |
| 81 |
74 80
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → 𝑀 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) |
| 82 |
77 75 76 79 81
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → 0 < if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) |
| 83 |
76 82
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ℝ+ ) |
| 84 |
83
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ℝ+ ) |
| 85 |
|
nfv |
⊢ Ⅎ 𝑛 𝑚 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) |
| 86 |
|
nfcv |
⊢ Ⅎ 𝑛 abs |
| 87 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 |
| 88 |
|
nfcv |
⊢ Ⅎ 𝑛 − |
| 89 |
|
nfcv |
⊢ Ⅎ 𝑛 0 |
| 90 |
87 88 89
|
nfov |
⊢ Ⅎ 𝑛 ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) |
| 91 |
86 90
|
nffv |
⊢ Ⅎ 𝑛 ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) |
| 92 |
|
nfcv |
⊢ Ⅎ 𝑛 < |
| 93 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) |
| 94 |
91 92 93
|
nfbr |
⊢ Ⅎ 𝑛 ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) |
| 95 |
85 94
|
nfim |
⊢ Ⅎ 𝑛 ( 𝑚 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) → ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ) |
| 96 |
|
breq2 |
⊢ ( 𝑛 = if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) → ( 𝑚 ≤ 𝑛 ↔ 𝑚 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) |
| 97 |
|
csbeq1a |
⊢ ( 𝑛 = if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) → 𝐴 = ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) |
| 98 |
97
|
fvoveq1d |
⊢ ( 𝑛 = if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) → ( abs ‘ ( 𝐴 − 0 ) ) = ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) ) |
| 99 |
98
|
breq1d |
⊢ ( 𝑛 = if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) → ( ( abs ‘ ( 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ↔ ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ) ) |
| 100 |
96 99
|
imbi12d |
⊢ ( 𝑛 = if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) → ( ( 𝑚 ≤ 𝑛 → ( abs ‘ ( 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ) ↔ ( 𝑚 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) → ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ) ) ) |
| 101 |
95 100
|
rspc |
⊢ ( if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ℝ+ → ( ∀ 𝑛 ∈ ℝ+ ( 𝑚 ≤ 𝑛 → ( abs ‘ ( 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ) → ( 𝑚 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) → ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ) ) ) |
| 102 |
84 101
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ∀ 𝑛 ∈ ℝ+ ( 𝑚 ≤ 𝑛 → ( abs ‘ ( 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ) → ( 𝑚 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) → ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ) ) ) |
| 103 |
74
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → 𝑀 ∈ ℝ ) |
| 104 |
|
max2 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑚 ∈ ℝ ) → 𝑚 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) |
| 105 |
103 104
|
sylancom |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → 𝑚 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) |
| 106 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℝ ) |
| 107 |
87
|
nfel1 |
⊢ Ⅎ 𝑛 ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ∈ ℝ |
| 108 |
97
|
eleq1d |
⊢ ( 𝑛 = if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) → ( 𝐴 ∈ ℝ ↔ ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ∈ ℝ ) ) |
| 109 |
107 108
|
rspc |
⊢ ( if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ℝ+ → ( ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℝ → ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ∈ ℝ ) ) |
| 110 |
84 106 109
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ∈ ℝ ) |
| 111 |
110
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ∈ ℂ ) |
| 112 |
111
|
subid1d |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) = ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) |
| 113 |
112
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) = ( abs ‘ ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ) |
| 114 |
76
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ℝ ) |
| 115 |
103 80
|
sylancom |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → 𝑀 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) |
| 116 |
|
elicopnf |
⊢ ( 𝑀 ∈ ℝ → ( if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ( 𝑀 [,) +∞ ) ↔ ( if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ℝ ∧ 𝑀 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) |
| 117 |
103 116
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ( 𝑀 [,) +∞ ) ↔ ( if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ℝ ∧ 𝑀 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) |
| 118 |
114 115 117
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ( 𝑀 [,) +∞ ) ) |
| 119 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → 𝑁 ∈ ℕ ) |
| 120 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → 𝑋 ∈ 𝐷 ) |
| 121 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → 𝑋 ≠ 1 ) |
| 122 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → 𝑀 ∈ ℕ ) |
| 123 |
11
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑛 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
| 124 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → 𝜑 ) |
| 125 |
124 12
|
syl3an1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → 𝐵 ≤ 𝐴 ) |
| 126 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( 𝑛 ∈ ℝ+ ↦ 𝐴 ) ⇝𝑟 0 ) |
| 127 |
1 2 119 4 5 6 120 121 9 122 123 125 126 14
|
dchrisumlema |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ℝ+ → ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ∈ ℝ ) ∧ ( if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ( 𝑀 [,) +∞ ) → 0 ≤ ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ) ) |
| 128 |
127
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ( 𝑀 [,) +∞ ) → 0 ≤ ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ) |
| 129 |
118 128
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → 0 ≤ ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) |
| 130 |
110 129
|
absidd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( abs ‘ ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) = ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) |
| 131 |
113 130
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) = ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) |
| 132 |
131
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ↔ ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ) ) |
| 133 |
|
rpre |
⊢ ( 𝑒 ∈ ℝ+ → 𝑒 ∈ ℝ ) |
| 134 |
133
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → 𝑒 ∈ ℝ ) |
| 135 |
68
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( 2 · 𝑅 ) + 1 ) ∈ ℝ+ ) |
| 136 |
110 134 135
|
ltmuldiv2d |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( ( ( 2 · 𝑅 ) + 1 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) < 𝑒 ↔ ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ) ) |
| 137 |
132 136
|
bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ↔ ( ( ( 2 · 𝑅 ) + 1 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) < 𝑒 ) ) |
| 138 |
51
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( 2 · 𝑅 ) ∈ ℝ ) |
| 139 |
135
|
rpred |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( 2 · 𝑅 ) + 1 ) ∈ ℝ ) |
| 140 |
138
|
lep1d |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( 2 · 𝑅 ) ≤ ( ( 2 · 𝑅 ) + 1 ) ) |
| 141 |
138 139 110 129 140
|
lemul1ad |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ≤ ( ( ( 2 · 𝑅 ) + 1 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ) |
| 142 |
138 110
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
| 143 |
139 110
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( ( 2 · 𝑅 ) + 1 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
| 144 |
|
lelttr |
⊢ ( ( ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ∈ ℝ ∧ ( ( ( 2 · 𝑅 ) + 1 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ∈ ℝ ∧ 𝑒 ∈ ℝ ) → ( ( ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ≤ ( ( ( 2 · 𝑅 ) + 1 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ∧ ( ( ( 2 · 𝑅 ) + 1 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) < 𝑒 ) → ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) < 𝑒 ) ) |
| 145 |
142 143 134 144
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ≤ ( ( ( 2 · 𝑅 ) + 1 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ∧ ( ( ( 2 · 𝑅 ) + 1 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) < 𝑒 ) → ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) < 𝑒 ) ) |
| 146 |
141 145
|
mpand |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( ( ( 2 · 𝑅 ) + 1 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) < 𝑒 → ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) < 𝑒 ) ) |
| 147 |
137 146
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) → ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) < 𝑒 ) ) |
| 148 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → 1 ∈ ℝ ) |
| 149 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → 𝑀 ∈ ℕ ) |
| 150 |
149
|
nnge1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → 1 ≤ 𝑀 ) |
| 151 |
148 75 76 150 81
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → 1 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) |
| 152 |
|
flge1nn |
⊢ ( ( if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ℝ ∧ 1 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) → ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ∈ ℕ ) |
| 153 |
76 151 152
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ∈ ℕ ) |
| 154 |
153
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ∈ ℕ ) |
| 155 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → 𝑁 ∈ ℕ ) |
| 156 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → 𝑋 ∈ 𝐷 ) |
| 157 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → 𝑋 ≠ 1 ) |
| 158 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → 𝑀 ∈ ℕ ) |
| 159 |
11
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ∧ 𝑛 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
| 160 |
12
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → 𝐵 ≤ 𝐴 ) |
| 161 |
160
|
3adant1r |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → 𝐵 ≤ 𝐴 ) |
| 162 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → ( 𝑛 ∈ ℝ+ ↦ 𝐴 ) ⇝𝑟 0 ) |
| 163 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → 𝑅 ∈ ℝ ) |
| 164 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ≤ 𝑅 ) |
| 165 |
83
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ℝ+ ) |
| 166 |
81
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → 𝑀 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) |
| 167 |
76
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ℝ ) |
| 168 |
|
fllep1 |
⊢ ( if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ∈ ℝ → if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ≤ ( ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) + 1 ) ) |
| 169 |
167 168
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ≤ ( ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) + 1 ) ) |
| 170 |
153
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ∈ ℕ ) |
| 171 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) |
| 172 |
1 2 155 4 5 6 156 157 9 158 159 161 162 14 163 164 165 166 169 170 171
|
dchrisumlem2 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) ≤ ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ) |
| 173 |
172
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) ≤ ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ) |
| 174 |
43
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℂ ) |
| 175 |
|
eluznn |
⊢ ( ( ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → 𝑘 ∈ ℕ ) |
| 176 |
154 175
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → 𝑘 ∈ ℕ ) |
| 177 |
174 176
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ∈ ℂ ) |
| 178 |
154
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ∈ ℕ ) |
| 179 |
174 178
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ∈ ℂ ) |
| 180 |
177 179
|
subcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ∈ ℂ ) |
| 181 |
180
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) ∈ ℝ ) |
| 182 |
142
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
| 183 |
134
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → 𝑒 ∈ ℝ ) |
| 184 |
|
lelttr |
⊢ ( ( ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) ∈ ℝ ∧ ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ∈ ℝ ∧ 𝑒 ∈ ℝ ) → ( ( ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) ≤ ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ∧ ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) < 𝑒 ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) < 𝑒 ) ) |
| 185 |
181 182 183 184
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → ( ( ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) ≤ ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) ∧ ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) < 𝑒 ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) < 𝑒 ) ) |
| 186 |
173 185
|
mpand |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) → ( ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) < 𝑒 → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) < 𝑒 ) ) |
| 187 |
186
|
ralrimdva |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) < 𝑒 → ∀ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) < 𝑒 ) ) |
| 188 |
|
fveq2 |
⊢ ( 𝑗 = ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) |
| 189 |
|
fveq2 |
⊢ ( 𝑗 = ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) = ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) |
| 190 |
189
|
oveq2d |
⊢ ( 𝑗 = ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) → ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) = ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) |
| 191 |
190
|
fveq2d |
⊢ ( 𝑗 = ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) ) = ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) ) |
| 192 |
191
|
breq1d |
⊢ ( 𝑗 = ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) → ( ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑒 ↔ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) < 𝑒 ) ) |
| 193 |
188 192
|
raleqbidv |
⊢ ( 𝑗 = ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑒 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) < 𝑒 ) ) |
| 194 |
193
|
rspcev |
⊢ ( ( ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) ) ) ) ) < 𝑒 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑒 ) |
| 195 |
154 187 194
|
syl6an |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( ( 2 · 𝑅 ) · ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 ) < 𝑒 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑒 ) ) |
| 196 |
147 195
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑒 ) ) |
| 197 |
105 196
|
embantd |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ( 𝑚 ≤ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) → ( abs ‘ ( ⦋ if ( 𝑀 ≤ 𝑚 , 𝑚 , 𝑀 ) / 𝑛 ⦌ 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑒 ) ) |
| 198 |
102 197
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑚 ∈ ℝ ) → ( ∀ 𝑛 ∈ ℝ+ ( 𝑚 ≤ 𝑛 → ( abs ‘ ( 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑒 ) ) |
| 199 |
198
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ( ∃ 𝑚 ∈ ℝ ∀ 𝑛 ∈ ℝ+ ( 𝑚 ≤ 𝑛 → ( abs ‘ ( 𝐴 − 0 ) ) < ( 𝑒 / ( ( 2 · 𝑅 ) + 1 ) ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑒 ) ) |
| 200 |
72 199
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑒 ) |
| 201 |
200
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑒 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) ) < 𝑒 ) |
| 202 |
|
seqex |
⊢ seq 1 ( + , 𝐹 ) ∈ V |
| 203 |
202
|
a1i |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ∈ V ) |
| 204 |
17 44 201 203
|
caucvg |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 205 |
202
|
eldm |
⊢ ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ↔ ∃ 𝑡 seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) |
| 206 |
204 205
|
sylib |
⊢ ( 𝜑 → ∃ 𝑡 seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) |
| 207 |
|
simpr |
⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) → seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) |
| 208 |
|
elrege0 |
⊢ ( ( 2 · 𝑅 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 2 · 𝑅 ) ∈ ℝ ∧ 0 ≤ ( 2 · 𝑅 ) ) ) |
| 209 |
51 67 208
|
sylanbrc |
⊢ ( 𝜑 → ( 2 · 𝑅 ) ∈ ( 0 [,) +∞ ) ) |
| 210 |
209
|
adantr |
⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) → ( 2 · 𝑅 ) ∈ ( 0 [,) +∞ ) ) |
| 211 |
|
eqid |
⊢ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) = ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) |
| 212 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 213 |
|
icossre |
⊢ ( ( 𝑀 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 𝑀 [,) +∞ ) ⊆ ℝ ) |
| 214 |
74 212 213
|
sylancl |
⊢ ( 𝜑 → ( 𝑀 [,) +∞ ) ⊆ ℝ ) |
| 215 |
214
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 𝑚 ∈ ℝ ) |
| 216 |
215
|
adantlr |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 𝑚 ∈ ℝ ) |
| 217 |
216
|
flcld |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → ( ⌊ ‘ 𝑚 ) ∈ ℤ ) |
| 218 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) |
| 219 |
43
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℂ ) |
| 220 |
|
1red |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 1 ∈ ℝ ) |
| 221 |
74
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 𝑀 ∈ ℝ ) |
| 222 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 𝑀 ∈ ℕ ) |
| 223 |
222
|
nnge1d |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 1 ≤ 𝑀 ) |
| 224 |
|
elicopnf |
⊢ ( 𝑀 ∈ ℝ → ( 𝑚 ∈ ( 𝑀 [,) +∞ ) ↔ ( 𝑚 ∈ ℝ ∧ 𝑀 ≤ 𝑚 ) ) ) |
| 225 |
74 224
|
syl |
⊢ ( 𝜑 → ( 𝑚 ∈ ( 𝑀 [,) +∞ ) ↔ ( 𝑚 ∈ ℝ ∧ 𝑀 ≤ 𝑚 ) ) ) |
| 226 |
225
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 𝑀 ≤ 𝑚 ) |
| 227 |
226
|
adantlr |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 𝑀 ≤ 𝑚 ) |
| 228 |
220 221 216 223 227
|
letrd |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 1 ≤ 𝑚 ) |
| 229 |
|
flge1nn |
⊢ ( ( 𝑚 ∈ ℝ ∧ 1 ≤ 𝑚 ) → ( ⌊ ‘ 𝑚 ) ∈ ℕ ) |
| 230 |
216 228 229
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → ( ⌊ ‘ 𝑚 ) ∈ ℕ ) |
| 231 |
219 230
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ∈ ℂ ) |
| 232 |
|
nnex |
⊢ ℕ ∈ V |
| 233 |
232
|
mptex |
⊢ ( 𝑘 ∈ ℕ ↦ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ∈ V |
| 234 |
233
|
a1i |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → ( 𝑘 ∈ ℕ ↦ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ∈ V ) |
| 235 |
219
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℂ ) |
| 236 |
|
eluznn |
⊢ ( ( ( ⌊ ‘ 𝑚 ) ∈ ℕ ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → 𝑖 ∈ ℕ ) |
| 237 |
230 236
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → 𝑖 ∈ ℕ ) |
| 238 |
235 237
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ∈ ℂ ) |
| 239 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) = ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) |
| 240 |
239
|
oveq2d |
⊢ ( 𝑘 = 𝑖 → ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) = ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) ) |
| 241 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ ↦ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) |
| 242 |
|
ovex |
⊢ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ∈ V |
| 243 |
240 241 242
|
fvmpt3i |
⊢ ( 𝑖 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ‘ 𝑖 ) = ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) ) |
| 244 |
237 243
|
syl |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( 𝑘 ∈ ℕ ↦ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ‘ 𝑖 ) = ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) ) |
| 245 |
211 217 218 231 234 238 244
|
climsubc2 |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → ( 𝑘 ∈ ℕ ↦ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ⇝ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑡 ) ) |
| 246 |
232
|
mptex |
⊢ ( 𝑘 ∈ ℕ ↦ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ) ∈ V |
| 247 |
246
|
a1i |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → ( 𝑘 ∈ ℕ ↦ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ) ∈ V ) |
| 248 |
|
fvex |
⊢ ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ∈ V |
| 249 |
248
|
fvconst2 |
⊢ ( 𝑖 ∈ ℕ → ( ( ℕ × { ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) } ) ‘ 𝑖 ) = ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) |
| 250 |
237 249
|
syl |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( ℕ × { ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) } ) ‘ 𝑖 ) = ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) |
| 251 |
250
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( ( ℕ × { ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) } ) ‘ 𝑖 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) = ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) ) |
| 252 |
244 251
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( 𝑘 ∈ ℕ ↦ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ‘ 𝑖 ) = ( ( ( ℕ × { ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) } ) ‘ 𝑖 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) ) |
| 253 |
231
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ∈ ℂ ) |
| 254 |
250 253
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( ℕ × { ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) } ) ‘ 𝑖 ) ∈ ℂ ) |
| 255 |
254 238
|
subcld |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( ( ℕ × { ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) } ) ‘ 𝑖 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) ∈ ℂ ) |
| 256 |
252 255
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( 𝑘 ∈ ℕ ↦ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ‘ 𝑖 ) ∈ ℂ ) |
| 257 |
240
|
fveq2d |
⊢ ( 𝑘 = 𝑖 → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) = ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) ) ) |
| 258 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ ↦ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ) = ( 𝑘 ∈ ℕ ↦ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ) |
| 259 |
|
fvex |
⊢ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ∈ V |
| 260 |
257 258 259
|
fvmpt3i |
⊢ ( 𝑖 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ) ‘ 𝑖 ) = ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) ) ) |
| 261 |
237 260
|
syl |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( 𝑘 ∈ ℕ ↦ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ) ‘ 𝑖 ) = ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) ) ) |
| 262 |
244
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( abs ‘ ( ( 𝑘 ∈ ℕ ↦ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ‘ 𝑖 ) ) = ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) ) ) |
| 263 |
261 262
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( 𝑘 ∈ ℕ ↦ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ) ‘ 𝑖 ) = ( abs ‘ ( ( 𝑘 ∈ ℕ ↦ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ‘ 𝑖 ) ) ) |
| 264 |
211 245 247 217 256 263
|
climabs |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → ( 𝑘 ∈ ℕ ↦ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ) ⇝ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑡 ) ) ) |
| 265 |
51
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → ( 2 · 𝑅 ) ∈ ℝ ) |
| 266 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 0 ∈ ℝ ) |
| 267 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 𝑀 ∈ ℝ ) |
| 268 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 0 < 𝑀 ) |
| 269 |
266 267 215 268 226
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 0 < 𝑚 ) |
| 270 |
215 269
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 𝑚 ∈ ℝ+ ) |
| 271 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 𝑚 / 𝑛 ⦌ 𝐴 |
| 272 |
271
|
nfel1 |
⊢ Ⅎ 𝑛 ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ ℝ |
| 273 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑚 → 𝐴 = ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
| 274 |
273
|
eleq1d |
⊢ ( 𝑛 = 𝑚 → ( 𝐴 ∈ ℝ ↔ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ ℝ ) ) |
| 275 |
272 274
|
rspc |
⊢ ( 𝑚 ∈ ℝ+ → ( ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℝ → ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ ℝ ) ) |
| 276 |
23 275
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ ℝ ) |
| 277 |
270 276
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ ℝ ) |
| 278 |
277
|
adantlr |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ∈ ℝ ) |
| 279 |
265 278
|
remulcld |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
| 280 |
279
|
recnd |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℂ ) |
| 281 |
|
1z |
⊢ 1 ∈ ℤ |
| 282 |
17
|
eqimss2i |
⊢ ( ℤ≥ ‘ 1 ) ⊆ ℕ |
| 283 |
282 232
|
climconst2 |
⊢ ( ( ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℂ ∧ 1 ∈ ℤ ) → ( ℕ × { ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) } ) ⇝ ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 284 |
280 281 283
|
sylancl |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → ( ℕ × { ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) } ) ⇝ ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 285 |
253 238
|
subcld |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) ∈ ℂ ) |
| 286 |
285
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) ) ∈ ℝ ) |
| 287 |
261 286
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( 𝑘 ∈ ℕ ↦ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ) ‘ 𝑖 ) ∈ ℝ ) |
| 288 |
|
ovex |
⊢ ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ V |
| 289 |
288
|
fvconst2 |
⊢ ( 𝑖 ∈ ℕ → ( ( ℕ × { ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) } ) ‘ 𝑖 ) = ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 290 |
237 289
|
syl |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( ℕ × { ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) } ) ‘ 𝑖 ) = ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 291 |
279
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
| 292 |
290 291
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( ℕ × { ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) } ) ‘ 𝑖 ) ∈ ℝ ) |
| 293 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → 𝜑 ) |
| 294 |
293 3
|
syl |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → 𝑁 ∈ ℕ ) |
| 295 |
293 7
|
syl |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → 𝑋 ∈ 𝐷 ) |
| 296 |
293 8
|
syl |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → 𝑋 ≠ 1 ) |
| 297 |
222
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → 𝑀 ∈ ℕ ) |
| 298 |
293 11
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) ∧ 𝑛 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
| 299 |
293 12
|
syl3an1 |
⊢ ( ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → 𝐵 ≤ 𝐴 ) |
| 300 |
293 13
|
syl |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( 𝑛 ∈ ℝ+ ↦ 𝐴 ) ⇝𝑟 0 ) |
| 301 |
293 15
|
syl |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → 𝑅 ∈ ℝ ) |
| 302 |
293 16
|
syl |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ≤ 𝑅 ) |
| 303 |
270
|
adantlr |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → 𝑚 ∈ ℝ+ ) |
| 304 |
303
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → 𝑚 ∈ ℝ+ ) |
| 305 |
227
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → 𝑀 ≤ 𝑚 ) |
| 306 |
216
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → 𝑚 ∈ ℝ ) |
| 307 |
|
reflcl |
⊢ ( 𝑚 ∈ ℝ → ( ⌊ ‘ 𝑚 ) ∈ ℝ ) |
| 308 |
|
peano2re |
⊢ ( ( ⌊ ‘ 𝑚 ) ∈ ℝ → ( ( ⌊ ‘ 𝑚 ) + 1 ) ∈ ℝ ) |
| 309 |
306 307 308
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( ⌊ ‘ 𝑚 ) + 1 ) ∈ ℝ ) |
| 310 |
|
flltp1 |
⊢ ( 𝑚 ∈ ℝ → 𝑚 < ( ( ⌊ ‘ 𝑚 ) + 1 ) ) |
| 311 |
306 310
|
syl |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → 𝑚 < ( ( ⌊ ‘ 𝑚 ) + 1 ) ) |
| 312 |
306 309 311
|
ltled |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → 𝑚 ≤ ( ( ⌊ ‘ 𝑚 ) + 1 ) ) |
| 313 |
230
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ⌊ ‘ 𝑚 ) ∈ ℕ ) |
| 314 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) |
| 315 |
1 2 294 4 5 6 295 296 9 297 298 299 300 14 301 302 304 305 312 313 314
|
dchrisumlem2 |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) ) ≤ ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 316 |
253 238
|
abssubd |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) ) ) = ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) ) ) |
| 317 |
261 316
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( 𝑘 ∈ ℕ ↦ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ) ‘ 𝑖 ) = ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝑖 ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) ) ) |
| 318 |
315 317 290
|
3brtr4d |
⊢ ( ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) → ( ( 𝑘 ∈ ℕ ↦ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) ) ‘ 𝑖 ) ≤ ( ( ℕ × { ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) } ) ‘ 𝑖 ) ) |
| 319 |
211 217 264 284 287 292 318
|
climle |
⊢ ( ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) ∧ 𝑚 ∈ ( 𝑀 [,) +∞ ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑡 ) ) ≤ ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 320 |
319
|
ralrimiva |
⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) → ∀ 𝑚 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑡 ) ) ≤ ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 321 |
|
oveq1 |
⊢ ( 𝑐 = ( 2 · 𝑅 ) → ( 𝑐 · 𝐵 ) = ( ( 2 · 𝑅 ) · 𝐵 ) ) |
| 322 |
321
|
breq2d |
⊢ ( 𝑐 = ( 2 · 𝑅 ) → ( ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · 𝐵 ) ↔ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( ( 2 · 𝑅 ) · 𝐵 ) ) ) |
| 323 |
322
|
ralbidv |
⊢ ( 𝑐 = ( 2 · 𝑅 ) → ( ∀ 𝑥 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · 𝐵 ) ↔ ∀ 𝑥 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( ( 2 · 𝑅 ) · 𝐵 ) ) ) |
| 324 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑥 → ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) = ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) |
| 325 |
324
|
fvoveq1d |
⊢ ( 𝑚 = 𝑥 → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑡 ) ) = ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ) |
| 326 |
|
vex |
⊢ 𝑚 ∈ V |
| 327 |
326
|
a1i |
⊢ ( 𝑚 = 𝑥 → 𝑚 ∈ V ) |
| 328 |
|
equequ2 |
⊢ ( 𝑚 = 𝑥 → ( 𝑛 = 𝑚 ↔ 𝑛 = 𝑥 ) ) |
| 329 |
328
|
biimpa |
⊢ ( ( 𝑚 = 𝑥 ∧ 𝑛 = 𝑚 ) → 𝑛 = 𝑥 ) |
| 330 |
329 9
|
syl |
⊢ ( ( 𝑚 = 𝑥 ∧ 𝑛 = 𝑚 ) → 𝐴 = 𝐵 ) |
| 331 |
327 330
|
csbied |
⊢ ( 𝑚 = 𝑥 → ⦋ 𝑚 / 𝑛 ⦌ 𝐴 = 𝐵 ) |
| 332 |
331
|
oveq2d |
⊢ ( 𝑚 = 𝑥 → ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) = ( ( 2 · 𝑅 ) · 𝐵 ) ) |
| 333 |
325 332
|
breq12d |
⊢ ( 𝑚 = 𝑥 → ( ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑡 ) ) ≤ ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ↔ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( ( 2 · 𝑅 ) · 𝐵 ) ) ) |
| 334 |
333
|
cbvralvw |
⊢ ( ∀ 𝑚 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑡 ) ) ≤ ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ↔ ∀ 𝑥 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( ( 2 · 𝑅 ) · 𝐵 ) ) |
| 335 |
323 334
|
bitr4di |
⊢ ( 𝑐 = ( 2 · 𝑅 ) → ( ∀ 𝑥 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · 𝐵 ) ↔ ∀ 𝑚 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑡 ) ) ≤ ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) ) |
| 336 |
335
|
rspcev |
⊢ ( ( ( 2 · 𝑅 ) ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑚 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑡 ) ) ≤ ( ( 2 · 𝑅 ) · ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) → ∃ 𝑐 ∈ ( 0 [,) +∞ ) ∀ 𝑥 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · 𝐵 ) ) |
| 337 |
210 320 336
|
syl2anc |
⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) → ∃ 𝑐 ∈ ( 0 [,) +∞ ) ∀ 𝑥 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · 𝐵 ) ) |
| 338 |
|
r19.42v |
⊢ ( ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 ∧ ∀ 𝑥 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · 𝐵 ) ) ↔ ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 ∧ ∃ 𝑐 ∈ ( 0 [,) +∞ ) ∀ 𝑥 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · 𝐵 ) ) ) |
| 339 |
207 337 338
|
sylanbrc |
⊢ ( ( 𝜑 ∧ seq 1 ( + , 𝐹 ) ⇝ 𝑡 ) → ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 ∧ ∀ 𝑥 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · 𝐵 ) ) ) |
| 340 |
339
|
ex |
⊢ ( 𝜑 → ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 → ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 ∧ ∀ 𝑥 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · 𝐵 ) ) ) ) |
| 341 |
340
|
eximdv |
⊢ ( 𝜑 → ( ∃ 𝑡 seq 1 ( + , 𝐹 ) ⇝ 𝑡 → ∃ 𝑡 ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 ∧ ∀ 𝑥 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · 𝐵 ) ) ) ) |
| 342 |
206 341
|
mpd |
⊢ ( 𝜑 → ∃ 𝑡 ∃ 𝑐 ∈ ( 0 [,) +∞ ) ( seq 1 ( + , 𝐹 ) ⇝ 𝑡 ∧ ∀ 𝑥 ∈ ( 𝑀 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑡 ) ) ≤ ( 𝑐 · 𝐵 ) ) ) |