| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
| 2 |
|
rpvmasum.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑍 ) |
| 3 |
|
rpvmasum.a |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 4 |
|
rpvmasum.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
| 5 |
|
rpvmasum.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
| 6 |
|
rpvmasum.1 |
⊢ 1 = ( 0g ‘ 𝐺 ) |
| 7 |
|
dchrisum.b |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
| 8 |
|
dchrisum.n1 |
⊢ ( 𝜑 → 𝑋 ≠ 1 ) |
| 9 |
|
dchrisum.2 |
⊢ ( 𝑛 = 𝑥 → 𝐴 = 𝐵 ) |
| 10 |
|
dchrisum.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 11 |
|
dchrisum.4 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
| 12 |
|
dchrisum.5 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ) → 𝐵 ≤ 𝐴 ) |
| 13 |
|
dchrisum.6 |
⊢ ( 𝜑 → ( 𝑛 ∈ ℝ+ ↦ 𝐴 ) ⇝𝑟 0 ) |
| 14 |
|
dchrisum.7 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · 𝐴 ) ) |
| 15 |
|
dchrisum.9 |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 16 |
|
dchrisum.10 |
⊢ ( 𝜑 → ∀ 𝑢 ∈ ( 0 ..^ 𝑁 ) ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ 𝑢 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ≤ 𝑅 ) |
| 17 |
|
dchrisumlem2.1 |
⊢ ( 𝜑 → 𝑈 ∈ ℝ+ ) |
| 18 |
|
dchrisumlem2.2 |
⊢ ( 𝜑 → 𝑀 ≤ 𝑈 ) |
| 19 |
|
dchrisumlem2.3 |
⊢ ( 𝜑 → 𝑈 ≤ ( 𝐼 + 1 ) ) |
| 20 |
|
dchrisumlem2.4 |
⊢ ( 𝜑 → 𝐼 ∈ ℕ ) |
| 21 |
|
dchrisumlem2.5 |
⊢ ( 𝜑 → 𝐽 ∈ ( ℤ≥ ‘ 𝐼 ) ) |
| 22 |
|
fzodisj |
⊢ ( ( 1 ..^ ( 𝐼 + 1 ) ) ∩ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) = ∅ |
| 23 |
22
|
a1i |
⊢ ( 𝜑 → ( ( 1 ..^ ( 𝐼 + 1 ) ) ∩ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) = ∅ ) |
| 24 |
20
|
peano2nnd |
⊢ ( 𝜑 → ( 𝐼 + 1 ) ∈ ℕ ) |
| 25 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 26 |
24 25
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝐼 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 27 |
|
eluzp1p1 |
⊢ ( 𝐽 ∈ ( ℤ≥ ‘ 𝐼 ) → ( 𝐽 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐼 + 1 ) ) ) |
| 28 |
21 27
|
syl |
⊢ ( 𝜑 → ( 𝐽 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐼 + 1 ) ) ) |
| 29 |
|
elfzuzb |
⊢ ( ( 𝐼 + 1 ) ∈ ( 1 ... ( 𝐽 + 1 ) ) ↔ ( ( 𝐼 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ ( 𝐽 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐼 + 1 ) ) ) ) |
| 30 |
26 28 29
|
sylanbrc |
⊢ ( 𝜑 → ( 𝐼 + 1 ) ∈ ( 1 ... ( 𝐽 + 1 ) ) ) |
| 31 |
|
fzosplit |
⊢ ( ( 𝐼 + 1 ) ∈ ( 1 ... ( 𝐽 + 1 ) ) → ( 1 ..^ ( 𝐽 + 1 ) ) = ( ( 1 ..^ ( 𝐼 + 1 ) ) ∪ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) ) |
| 32 |
30 31
|
syl |
⊢ ( 𝜑 → ( 1 ..^ ( 𝐽 + 1 ) ) = ( ( 1 ..^ ( 𝐼 + 1 ) ) ∪ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) ) |
| 33 |
|
fzofi |
⊢ ( 1 ..^ ( 𝐽 + 1 ) ) ∈ Fin |
| 34 |
33
|
a1i |
⊢ ( 𝜑 → ( 1 ..^ ( 𝐽 + 1 ) ) ∈ Fin ) |
| 35 |
|
elfzouz |
⊢ ( 𝑖 ∈ ( 1 ..^ ( 𝐽 + 1 ) ) → 𝑖 ∈ ( ℤ≥ ‘ 1 ) ) |
| 36 |
35 25
|
eleqtrrdi |
⊢ ( 𝑖 ∈ ( 1 ..^ ( 𝐽 + 1 ) ) → 𝑖 ∈ ℕ ) |
| 37 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝑋 ∈ 𝐷 ) |
| 38 |
|
nnz |
⊢ ( 𝑖 ∈ ℕ → 𝑖 ∈ ℤ ) |
| 39 |
38
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝑖 ∈ ℤ ) |
| 40 |
4 1 5 2 37 39
|
dchrzrhcl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) ∈ ℂ ) |
| 41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
dchrisumlema |
⊢ ( 𝜑 → ( ( 𝑖 ∈ ℝ+ → ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ ℝ ) ∧ ( 𝑖 ∈ ( 𝑀 [,) +∞ ) → 0 ≤ ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) ) |
| 42 |
41
|
simpld |
⊢ ( 𝜑 → ( 𝑖 ∈ ℝ+ → ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ ℝ ) ) |
| 43 |
|
nnrp |
⊢ ( 𝑖 ∈ ℕ → 𝑖 ∈ ℝ+ ) |
| 44 |
42 43
|
impel |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ ℝ ) |
| 45 |
44
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ ℂ ) |
| 46 |
40 45
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ∈ ℂ ) |
| 47 |
36 46
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ..^ ( 𝐽 + 1 ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ∈ ℂ ) |
| 48 |
23 32 34 47
|
fsumsplit |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ..^ ( 𝐽 + 1 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) = ( Σ 𝑖 ∈ ( 1 ..^ ( 𝐼 + 1 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) + Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) ) |
| 49 |
|
eluzelz |
⊢ ( 𝐽 ∈ ( ℤ≥ ‘ 𝐼 ) → 𝐽 ∈ ℤ ) |
| 50 |
|
fzval3 |
⊢ ( 𝐽 ∈ ℤ → ( 1 ... 𝐽 ) = ( 1 ..^ ( 𝐽 + 1 ) ) ) |
| 51 |
21 49 50
|
3syl |
⊢ ( 𝜑 → ( 1 ... 𝐽 ) = ( 1 ..^ ( 𝐽 + 1 ) ) ) |
| 52 |
51
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝐽 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) = Σ 𝑖 ∈ ( 1 ..^ ( 𝐽 + 1 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) |
| 53 |
20
|
nnzd |
⊢ ( 𝜑 → 𝐼 ∈ ℤ ) |
| 54 |
|
fzval3 |
⊢ ( 𝐼 ∈ ℤ → ( 1 ... 𝐼 ) = ( 1 ..^ ( 𝐼 + 1 ) ) ) |
| 55 |
53 54
|
syl |
⊢ ( 𝜑 → ( 1 ... 𝐼 ) = ( 1 ..^ ( 𝐼 + 1 ) ) ) |
| 56 |
55
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝐼 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) = Σ 𝑖 ∈ ( 1 ..^ ( 𝐼 + 1 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) |
| 57 |
56
|
oveq1d |
⊢ ( 𝜑 → ( Σ 𝑖 ∈ ( 1 ... 𝐼 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) + Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) = ( Σ 𝑖 ∈ ( 1 ..^ ( 𝐼 + 1 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) + Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) ) |
| 58 |
48 52 57
|
3eqtr4d |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝐽 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) = ( Σ 𝑖 ∈ ( 1 ... 𝐼 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) + Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) ) |
| 59 |
|
elfznn |
⊢ ( 𝑖 ∈ ( 1 ... 𝐽 ) → 𝑖 ∈ ℕ ) |
| 60 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝑖 ∈ ℕ ) |
| 61 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑖 |
| 62 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) |
| 63 |
|
nfcv |
⊢ Ⅎ 𝑛 · |
| 64 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 𝑖 / 𝑛 ⦌ 𝐴 |
| 65 |
62 63 64
|
nfov |
⊢ Ⅎ 𝑛 ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) |
| 66 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑖 → ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) = ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) ) |
| 67 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑖 → 𝐴 = ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) |
| 68 |
66 67
|
oveq12d |
⊢ ( 𝑛 = 𝑖 → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · 𝐴 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) |
| 69 |
61 65 68 14
|
fvmptf |
⊢ ( ( 𝑖 ∈ ℕ ∧ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ∈ ℂ ) → ( 𝐹 ‘ 𝑖 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) |
| 70 |
60 46 69
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝐹 ‘ 𝑖 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) |
| 71 |
59 70
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝐽 ) ) → ( 𝐹 ‘ 𝑖 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) |
| 72 |
20 25
|
eleqtrdi |
⊢ ( 𝜑 → 𝐼 ∈ ( ℤ≥ ‘ 1 ) ) |
| 73 |
|
uztrn |
⊢ ( ( 𝐽 ∈ ( ℤ≥ ‘ 𝐼 ) ∧ 𝐼 ∈ ( ℤ≥ ‘ 1 ) ) → 𝐽 ∈ ( ℤ≥ ‘ 1 ) ) |
| 74 |
21 72 73
|
syl2anc |
⊢ ( 𝜑 → 𝐽 ∈ ( ℤ≥ ‘ 1 ) ) |
| 75 |
59 46
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝐽 ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ∈ ℂ ) |
| 76 |
71 74 75
|
fsumser |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝐽 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) = ( seq 1 ( + , 𝐹 ) ‘ 𝐽 ) ) |
| 77 |
58 76
|
eqtr3d |
⊢ ( 𝜑 → ( Σ 𝑖 ∈ ( 1 ... 𝐼 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) + Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) = ( seq 1 ( + , 𝐹 ) ‘ 𝐽 ) ) |
| 78 |
|
elfznn |
⊢ ( 𝑖 ∈ ( 1 ... 𝐼 ) → 𝑖 ∈ ℕ ) |
| 79 |
78 70
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝐼 ) ) → ( 𝐹 ‘ 𝑖 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) |
| 80 |
78 46
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝐼 ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ∈ ℂ ) |
| 81 |
79 72 80
|
fsumser |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝐼 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) = ( seq 1 ( + , 𝐹 ) ‘ 𝐼 ) ) |
| 82 |
77 81
|
oveq12d |
⊢ ( 𝜑 → ( ( Σ 𝑖 ∈ ( 1 ... 𝐼 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) + Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) − Σ 𝑖 ∈ ( 1 ... 𝐼 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) = ( ( seq 1 ( + , 𝐹 ) ‘ 𝐽 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝐼 ) ) ) |
| 83 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝐼 ) ∈ Fin ) |
| 84 |
83 80
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝐼 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ∈ ℂ ) |
| 85 |
|
fzofi |
⊢ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ∈ Fin |
| 86 |
85
|
a1i |
⊢ ( 𝜑 → ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ∈ Fin ) |
| 87 |
|
ssun2 |
⊢ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ⊆ ( ( 1 ..^ ( 𝐼 + 1 ) ) ∪ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) |
| 88 |
87 32
|
sseqtrrid |
⊢ ( 𝜑 → ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ⊆ ( 1 ..^ ( 𝐽 + 1 ) ) ) |
| 89 |
88
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) → 𝑖 ∈ ( 1 ..^ ( 𝐽 + 1 ) ) ) |
| 90 |
89 47
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ∈ ℂ ) |
| 91 |
86 90
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ∈ ℂ ) |
| 92 |
84 91
|
pncan2d |
⊢ ( 𝜑 → ( ( Σ 𝑖 ∈ ( 1 ... 𝐼 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) + Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) − Σ 𝑖 ∈ ( 1 ... 𝐼 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) = Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) |
| 93 |
82 92
|
eqtr3d |
⊢ ( 𝜑 → ( ( seq 1 ( + , 𝐹 ) ‘ 𝐽 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝐼 ) ) = Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) |
| 94 |
93
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝐽 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝐼 ) ) ) = ( abs ‘ Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) ) |
| 95 |
91
|
abscld |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) ∈ ℝ ) |
| 96 |
|
2re |
⊢ 2 ∈ ℝ |
| 97 |
96
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 98 |
97 15
|
remulcld |
⊢ ( 𝜑 → ( 2 · 𝑅 ) ∈ ℝ ) |
| 99 |
44
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ℕ ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ ℝ ) |
| 100 |
|
csbeq1 |
⊢ ( 𝑖 = ( 𝐼 + 1 ) → ⦋ 𝑖 / 𝑛 ⦌ 𝐴 = ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) |
| 101 |
100
|
eleq1d |
⊢ ( 𝑖 = ( 𝐼 + 1 ) → ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ ℝ ↔ ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ∈ ℝ ) ) |
| 102 |
101
|
rspcv |
⊢ ( ( 𝐼 + 1 ) ∈ ℕ → ( ∀ 𝑖 ∈ ℕ ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ ℝ → ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ∈ ℝ ) ) |
| 103 |
24 99 102
|
sylc |
⊢ ( 𝜑 → ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ∈ ℝ ) |
| 104 |
98 103
|
remulcld |
⊢ ( 𝜑 → ( ( 2 · 𝑅 ) · ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
| 105 |
11
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℝ ) |
| 106 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 𝑈 / 𝑛 ⦌ 𝐴 |
| 107 |
106
|
nfel1 |
⊢ Ⅎ 𝑛 ⦋ 𝑈 / 𝑛 ⦌ 𝐴 ∈ ℝ |
| 108 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑈 → 𝐴 = ⦋ 𝑈 / 𝑛 ⦌ 𝐴 ) |
| 109 |
108
|
eleq1d |
⊢ ( 𝑛 = 𝑈 → ( 𝐴 ∈ ℝ ↔ ⦋ 𝑈 / 𝑛 ⦌ 𝐴 ∈ ℝ ) ) |
| 110 |
107 109
|
rspc |
⊢ ( 𝑈 ∈ ℝ+ → ( ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℝ → ⦋ 𝑈 / 𝑛 ⦌ 𝐴 ∈ ℝ ) ) |
| 111 |
17 105 110
|
sylc |
⊢ ( 𝜑 → ⦋ 𝑈 / 𝑛 ⦌ 𝐴 ∈ ℝ ) |
| 112 |
98 111
|
remulcld |
⊢ ( 𝜑 → ( ( 2 · 𝑅 ) · ⦋ 𝑈 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
| 113 |
74 25
|
eleqtrrdi |
⊢ ( 𝜑 → 𝐽 ∈ ℕ ) |
| 114 |
113
|
peano2nnd |
⊢ ( 𝜑 → ( 𝐽 + 1 ) ∈ ℕ ) |
| 115 |
114
|
nnrpd |
⊢ ( 𝜑 → ( 𝐽 + 1 ) ∈ ℝ+ ) |
| 116 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
dchrisumlema |
⊢ ( 𝜑 → ( ( ( 𝐽 + 1 ) ∈ ℝ+ → ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ∈ ℝ ) ∧ ( ( 𝐽 + 1 ) ∈ ( 𝑀 [,) +∞ ) → 0 ≤ ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ) ) ) |
| 117 |
116
|
simpld |
⊢ ( 𝜑 → ( ( 𝐽 + 1 ) ∈ ℝ+ → ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ∈ ℝ ) ) |
| 118 |
115 117
|
mpd |
⊢ ( 𝜑 → ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ∈ ℝ ) |
| 119 |
118
|
recnd |
⊢ ( 𝜑 → ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ∈ ℂ ) |
| 120 |
|
fzofi |
⊢ ( 0 ..^ ( 𝐽 + 1 ) ) ∈ Fin |
| 121 |
120
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ ( 𝐽 + 1 ) ) ∈ Fin ) |
| 122 |
|
elfzoelz |
⊢ ( 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) → 𝑛 ∈ ℤ ) |
| 123 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℤ ) → 𝑋 ∈ 𝐷 ) |
| 124 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℤ ) |
| 125 |
4 1 5 2 123 124
|
dchrzrhcl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℤ ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ∈ ℂ ) |
| 126 |
122 125
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ∈ ℂ ) |
| 127 |
121 126
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ∈ ℂ ) |
| 128 |
119 127
|
mulcld |
⊢ ( 𝜑 → ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ∈ ℂ ) |
| 129 |
103
|
recnd |
⊢ ( 𝜑 → ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ∈ ℂ ) |
| 130 |
|
fzofi |
⊢ ( 0 ..^ ( 𝐼 + 1 ) ) ∈ Fin |
| 131 |
130
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ ( 𝐼 + 1 ) ) ∈ Fin ) |
| 132 |
|
elfzoelz |
⊢ ( 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) → 𝑛 ∈ ℤ ) |
| 133 |
132 125
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ∈ ℂ ) |
| 134 |
131 133
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ∈ ℂ ) |
| 135 |
129 134
|
mulcld |
⊢ ( 𝜑 → ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ∈ ℂ ) |
| 136 |
128 135
|
subcld |
⊢ ( 𝜑 → ( ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) − ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ∈ ℂ ) |
| 137 |
136
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) − ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) ∈ ℝ ) |
| 138 |
89 36
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) → 𝑖 ∈ ℕ ) |
| 139 |
|
peano2nn |
⊢ ( 𝑖 ∈ ℕ → ( 𝑖 + 1 ) ∈ ℕ ) |
| 140 |
139
|
nnrpd |
⊢ ( 𝑖 ∈ ℕ → ( 𝑖 + 1 ) ∈ ℝ+ ) |
| 141 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 |
| 142 |
141
|
nfel1 |
⊢ Ⅎ 𝑛 ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ∈ ℝ |
| 143 |
|
csbeq1a |
⊢ ( 𝑛 = ( 𝑖 + 1 ) → 𝐴 = ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ) |
| 144 |
143
|
eleq1d |
⊢ ( 𝑛 = ( 𝑖 + 1 ) → ( 𝐴 ∈ ℝ ↔ ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ∈ ℝ ) ) |
| 145 |
142 144
|
rspc |
⊢ ( ( 𝑖 + 1 ) ∈ ℝ+ → ( ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℝ → ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ∈ ℝ ) ) |
| 146 |
145
|
impcom |
⊢ ( ( ∀ 𝑛 ∈ ℝ+ 𝐴 ∈ ℝ ∧ ( 𝑖 + 1 ) ∈ ℝ+ ) → ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ∈ ℝ ) |
| 147 |
105 140 146
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ∈ ℝ ) |
| 148 |
147 44
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
| 149 |
148
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ∈ ℂ ) |
| 150 |
|
fzofi |
⊢ ( 0 ..^ ( 𝑖 + 1 ) ) ∈ Fin |
| 151 |
150
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ ( 𝑖 + 1 ) ) ∈ Fin ) |
| 152 |
|
elfzoelz |
⊢ ( 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) → 𝑛 ∈ ℤ ) |
| 153 |
152 125
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ∈ ℂ ) |
| 154 |
151 153
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ∈ ℂ ) |
| 155 |
154
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ∈ ℂ ) |
| 156 |
149 155
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ( ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) · Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ∈ ℂ ) |
| 157 |
138 156
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) → ( ( ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) · Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ∈ ℂ ) |
| 158 |
86 157
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) · Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ∈ ℂ ) |
| 159 |
158
|
abscld |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) · Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ∈ ℝ ) |
| 160 |
137 159
|
readdcld |
⊢ ( 𝜑 → ( ( abs ‘ ( ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) − ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) + ( abs ‘ Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) · Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) ∈ ℝ ) |
| 161 |
40 45
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) = ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 · ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) ) ) |
| 162 |
|
nnnn0 |
⊢ ( 𝑖 ∈ ℕ → 𝑖 ∈ ℕ0 ) |
| 163 |
162
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝑖 ∈ ℕ0 ) |
| 164 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 165 |
163 164
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝑖 ∈ ( ℤ≥ ‘ 0 ) ) |
| 166 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 0 ... 𝑖 ) → 𝑛 ∈ ℤ ) |
| 167 |
125
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ 𝑛 ∈ ℤ ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ∈ ℂ ) |
| 168 |
166 167
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ 𝑛 ∈ ( 0 ... 𝑖 ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ∈ ℂ ) |
| 169 |
165 168 66
|
fzosump1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) = ( Σ 𝑛 ∈ ( 0 ..^ 𝑖 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) + ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) ) ) |
| 170 |
169
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) − Σ 𝑛 ∈ ( 0 ..^ 𝑖 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) = ( ( Σ 𝑛 ∈ ( 0 ..^ 𝑖 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) + ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) ) − Σ 𝑛 ∈ ( 0 ..^ 𝑖 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) |
| 171 |
|
fzofi |
⊢ ( 0 ..^ 𝑖 ) ∈ Fin |
| 172 |
171
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 0 ..^ 𝑖 ) ∈ Fin ) |
| 173 |
|
elfzoelz |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑖 ) → 𝑛 ∈ ℤ ) |
| 174 |
173 167
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) ∧ 𝑛 ∈ ( 0 ..^ 𝑖 ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ∈ ℂ ) |
| 175 |
172 174
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → Σ 𝑛 ∈ ( 0 ..^ 𝑖 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ∈ ℂ ) |
| 176 |
175 40
|
pncan2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ( Σ 𝑛 ∈ ( 0 ..^ 𝑖 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) + ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) ) − Σ 𝑛 ∈ ( 0 ..^ 𝑖 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) = ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) ) |
| 177 |
170 176
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) = ( Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) − Σ 𝑛 ∈ ( 0 ..^ 𝑖 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) |
| 178 |
177
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 · ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) ) = ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 · ( Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) − Σ 𝑛 ∈ ( 0 ..^ 𝑖 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) |
| 179 |
161 178
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) = ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 · ( Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) − Σ 𝑛 ∈ ( 0 ..^ 𝑖 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) |
| 180 |
138 179
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) = ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 · ( Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) − Σ 𝑛 ∈ ( 0 ..^ 𝑖 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) |
| 181 |
180
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) = Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 · ( Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) − Σ 𝑛 ∈ ( 0 ..^ 𝑖 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) |
| 182 |
|
csbeq1 |
⊢ ( 𝑘 = 𝑖 → ⦋ 𝑘 / 𝑛 ⦌ 𝐴 = ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) |
| 183 |
|
oveq2 |
⊢ ( 𝑘 = 𝑖 → ( 0 ..^ 𝑘 ) = ( 0 ..^ 𝑖 ) ) |
| 184 |
183
|
sumeq1d |
⊢ ( 𝑘 = 𝑖 → Σ 𝑛 ∈ ( 0 ..^ 𝑘 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) = Σ 𝑛 ∈ ( 0 ..^ 𝑖 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) |
| 185 |
182 184
|
jca |
⊢ ( 𝑘 = 𝑖 → ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 = ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∧ Σ 𝑛 ∈ ( 0 ..^ 𝑘 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) = Σ 𝑛 ∈ ( 0 ..^ 𝑖 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) |
| 186 |
|
csbeq1 |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ⦋ 𝑘 / 𝑛 ⦌ 𝐴 = ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ) |
| 187 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( 0 ..^ 𝑘 ) = ( 0 ..^ ( 𝑖 + 1 ) ) ) |
| 188 |
187
|
sumeq1d |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → Σ 𝑛 ∈ ( 0 ..^ 𝑘 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) = Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) |
| 189 |
186 188
|
jca |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 = ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ∧ Σ 𝑛 ∈ ( 0 ..^ 𝑘 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) = Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) |
| 190 |
|
csbeq1 |
⊢ ( 𝑘 = ( 𝐼 + 1 ) → ⦋ 𝑘 / 𝑛 ⦌ 𝐴 = ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) |
| 191 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝐼 + 1 ) → ( 0 ..^ 𝑘 ) = ( 0 ..^ ( 𝐼 + 1 ) ) ) |
| 192 |
191
|
sumeq1d |
⊢ ( 𝑘 = ( 𝐼 + 1 ) → Σ 𝑛 ∈ ( 0 ..^ 𝑘 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) = Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) |
| 193 |
190 192
|
jca |
⊢ ( 𝑘 = ( 𝐼 + 1 ) → ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 = ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ∧ Σ 𝑛 ∈ ( 0 ..^ 𝑘 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) = Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) |
| 194 |
|
csbeq1 |
⊢ ( 𝑘 = ( 𝐽 + 1 ) → ⦋ 𝑘 / 𝑛 ⦌ 𝐴 = ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ) |
| 195 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝐽 + 1 ) → ( 0 ..^ 𝑘 ) = ( 0 ..^ ( 𝐽 + 1 ) ) ) |
| 196 |
195
|
sumeq1d |
⊢ ( 𝑘 = ( 𝐽 + 1 ) → Σ 𝑛 ∈ ( 0 ..^ 𝑘 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) = Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) |
| 197 |
194 196
|
jca |
⊢ ( 𝑘 = ( 𝐽 + 1 ) → ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 = ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ∧ Σ 𝑛 ∈ ( 0 ..^ 𝑘 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) = Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) |
| 198 |
45
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ℕ ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ ℂ ) |
| 199 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 + 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( 𝐼 + 1 ) ) ) |
| 200 |
|
eluznn |
⊢ ( ( ( 𝐼 + 1 ) ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝐼 + 1 ) ) ) → 𝑘 ∈ ℕ ) |
| 201 |
24 199 200
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 + 1 ) ) ) → 𝑘 ∈ ℕ ) |
| 202 |
|
csbeq1 |
⊢ ( 𝑖 = 𝑘 → ⦋ 𝑖 / 𝑛 ⦌ 𝐴 = ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ) |
| 203 |
202
|
eleq1d |
⊢ ( 𝑖 = 𝑘 → ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ ℂ ↔ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∈ ℂ ) ) |
| 204 |
203
|
rspccva |
⊢ ( ( ∀ 𝑖 ∈ ℕ ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∈ ℂ ) |
| 205 |
198 201 204
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 + 1 ) ) ) → ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∈ ℂ ) |
| 206 |
|
fzofi |
⊢ ( 0 ..^ 𝑘 ) ∈ Fin |
| 207 |
206
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ 𝑘 ) ∈ Fin ) |
| 208 |
|
elfzoelz |
⊢ ( 𝑛 ∈ ( 0 ..^ 𝑘 ) → 𝑛 ∈ ℤ ) |
| 209 |
208 125
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ..^ 𝑘 ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ∈ ℂ ) |
| 210 |
207 209
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 0 ..^ 𝑘 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ∈ ℂ ) |
| 211 |
210
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐼 + 1 ) ... ( 𝐽 + 1 ) ) ) → Σ 𝑛 ∈ ( 0 ..^ 𝑘 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ∈ ℂ ) |
| 212 |
185 189 193 197 28 205 211
|
fsumparts |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 · ( Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) − Σ 𝑛 ∈ ( 0 ..^ 𝑖 ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) = ( ( ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) − ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) − Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) · Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) |
| 213 |
181 212
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) = ( ( ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) − ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) − Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) · Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) |
| 214 |
213
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) = ( abs ‘ ( ( ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) − ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) − Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) · Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) ) |
| 215 |
136 158
|
abs2dif2d |
⊢ ( 𝜑 → ( abs ‘ ( ( ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) − ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) − Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) · Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) ≤ ( ( abs ‘ ( ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) − ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) + ( abs ‘ Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) · Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) ) |
| 216 |
214 215
|
eqbrtrd |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) ≤ ( ( abs ‘ ( ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) − ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) + ( abs ‘ Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) · Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) ) |
| 217 |
118 103
|
readdcld |
⊢ ( 𝜑 → ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 + ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
| 218 |
217 15
|
remulcld |
⊢ ( 𝜑 → ( ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 + ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) · 𝑅 ) ∈ ℝ ) |
| 219 |
182 186 190 194 28 205
|
telfsumo |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ) = ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ) ) |
| 220 |
138 44
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) → ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ∈ ℝ ) |
| 221 |
138 147
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) → ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ∈ ℝ ) |
| 222 |
220 221
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) → ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
| 223 |
86 222
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
| 224 |
219 223
|
eqeltrrd |
⊢ ( 𝜑 → ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
| 225 |
224 15
|
remulcld |
⊢ ( 𝜑 → ( ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ) · 𝑅 ) ∈ ℝ ) |
| 226 |
128
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ∈ ℝ ) |
| 227 |
135
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ∈ ℝ ) |
| 228 |
226 227
|
readdcld |
⊢ ( 𝜑 → ( ( abs ‘ ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) + ( abs ‘ ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) ∈ ℝ ) |
| 229 |
128 135
|
abs2dif2d |
⊢ ( 𝜑 → ( abs ‘ ( ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) − ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) ≤ ( ( abs ‘ ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) + ( abs ‘ ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) ) |
| 230 |
118 15
|
remulcld |
⊢ ( 𝜑 → ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · 𝑅 ) ∈ ℝ ) |
| 231 |
103 15
|
remulcld |
⊢ ( 𝜑 → ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · 𝑅 ) ∈ ℝ ) |
| 232 |
119 127
|
absmuld |
⊢ ( 𝜑 → ( abs ‘ ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) = ( ( abs ‘ ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ) · ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) |
| 233 |
|
eluzelre |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑖 ∈ ℝ ) |
| 234 |
233
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑖 ∈ ℝ ) |
| 235 |
|
eluzle |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑖 ) |
| 236 |
235
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ≤ 𝑖 ) |
| 237 |
10
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 238 |
237
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ∈ ℝ ) |
| 239 |
|
elicopnf |
⊢ ( 𝑀 ∈ ℝ → ( 𝑖 ∈ ( 𝑀 [,) +∞ ) ↔ ( 𝑖 ∈ ℝ ∧ 𝑀 ≤ 𝑖 ) ) ) |
| 240 |
238 239
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑖 ∈ ( 𝑀 [,) +∞ ) ↔ ( 𝑖 ∈ ℝ ∧ 𝑀 ≤ 𝑖 ) ) ) |
| 241 |
234 236 240
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑖 ∈ ( 𝑀 [,) +∞ ) ) |
| 242 |
241
|
ex |
⊢ ( 𝜑 → ( 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑖 ∈ ( 𝑀 [,) +∞ ) ) ) |
| 243 |
242
|
ssrdv |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑀 ) ⊆ ( 𝑀 [,) +∞ ) ) |
| 244 |
10
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 245 |
53
|
peano2zd |
⊢ ( 𝜑 → ( 𝐼 + 1 ) ∈ ℤ ) |
| 246 |
17
|
rpred |
⊢ ( 𝜑 → 𝑈 ∈ ℝ ) |
| 247 |
24
|
nnred |
⊢ ( 𝜑 → ( 𝐼 + 1 ) ∈ ℝ ) |
| 248 |
237 246 247 18 19
|
letrd |
⊢ ( 𝜑 → 𝑀 ≤ ( 𝐼 + 1 ) ) |
| 249 |
|
eluz2 |
⊢ ( ( 𝐼 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ ( 𝐼 + 1 ) ∈ ℤ ∧ 𝑀 ≤ ( 𝐼 + 1 ) ) ) |
| 250 |
244 245 248 249
|
syl3anbrc |
⊢ ( 𝜑 → ( 𝐼 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 251 |
|
uztrn |
⊢ ( ( ( 𝐽 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐼 + 1 ) ) ∧ ( 𝐼 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐽 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 252 |
28 250 251
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 253 |
243 252
|
sseldd |
⊢ ( 𝜑 → ( 𝐽 + 1 ) ∈ ( 𝑀 [,) +∞ ) ) |
| 254 |
116
|
simprd |
⊢ ( 𝜑 → ( ( 𝐽 + 1 ) ∈ ( 𝑀 [,) +∞ ) → 0 ≤ ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ) ) |
| 255 |
253 254
|
mpd |
⊢ ( 𝜑 → 0 ≤ ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ) |
| 256 |
118 255
|
absidd |
⊢ ( 𝜑 → ( abs ‘ ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ) = ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ) |
| 257 |
256
|
oveq1d |
⊢ ( 𝜑 → ( ( abs ‘ ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ) · ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) = ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) |
| 258 |
232 257
|
eqtrd |
⊢ ( 𝜑 → ( abs ‘ ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) = ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) |
| 259 |
127
|
abscld |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 260 |
114
|
nnnn0d |
⊢ ( 𝜑 → ( 𝐽 + 1 ) ∈ ℕ0 ) |
| 261 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
dchrisumlem1 |
⊢ ( ( 𝜑 ∧ ( 𝐽 + 1 ) ∈ ℕ0 ) → ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ≤ 𝑅 ) |
| 262 |
260 261
|
mpdan |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ≤ 𝑅 ) |
| 263 |
259 15 118 255 262
|
lemul2ad |
⊢ ( 𝜑 → ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ≤ ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · 𝑅 ) ) |
| 264 |
258 263
|
eqbrtrd |
⊢ ( 𝜑 → ( abs ‘ ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ≤ ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · 𝑅 ) ) |
| 265 |
129 134
|
absmuld |
⊢ ( 𝜑 → ( abs ‘ ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) = ( ( abs ‘ ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) · ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) |
| 266 |
243 250
|
sseldd |
⊢ ( 𝜑 → ( 𝐼 + 1 ) ∈ ( 𝑀 [,) +∞ ) ) |
| 267 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
dchrisumlema |
⊢ ( 𝜑 → ( ( ( 𝐼 + 1 ) ∈ ℝ+ → ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ∈ ℝ ) ∧ ( ( 𝐼 + 1 ) ∈ ( 𝑀 [,) +∞ ) → 0 ≤ ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) ) ) |
| 268 |
267
|
simprd |
⊢ ( 𝜑 → ( ( 𝐼 + 1 ) ∈ ( 𝑀 [,) +∞ ) → 0 ≤ ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) ) |
| 269 |
266 268
|
mpd |
⊢ ( 𝜑 → 0 ≤ ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) |
| 270 |
103 269
|
absidd |
⊢ ( 𝜑 → ( abs ‘ ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) = ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) |
| 271 |
270
|
oveq1d |
⊢ ( 𝜑 → ( ( abs ‘ ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) · ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) = ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) |
| 272 |
265 271
|
eqtrd |
⊢ ( 𝜑 → ( abs ‘ ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) = ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) |
| 273 |
134
|
abscld |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 274 |
24
|
nnnn0d |
⊢ ( 𝜑 → ( 𝐼 + 1 ) ∈ ℕ0 ) |
| 275 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
dchrisumlem1 |
⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) ∈ ℕ0 ) → ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ≤ 𝑅 ) |
| 276 |
274 275
|
mpdan |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ≤ 𝑅 ) |
| 277 |
273 15 103 269 276
|
lemul2ad |
⊢ ( 𝜑 → ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ≤ ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · 𝑅 ) ) |
| 278 |
272 277
|
eqbrtrd |
⊢ ( 𝜑 → ( abs ‘ ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ≤ ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · 𝑅 ) ) |
| 279 |
226 227 230 231 264 278
|
le2addd |
⊢ ( 𝜑 → ( ( abs ‘ ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) + ( abs ‘ ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) ≤ ( ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · 𝑅 ) + ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · 𝑅 ) ) ) |
| 280 |
15
|
recnd |
⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
| 281 |
119 129 280
|
adddird |
⊢ ( 𝜑 → ( ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 + ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) · 𝑅 ) = ( ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · 𝑅 ) + ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · 𝑅 ) ) ) |
| 282 |
279 281
|
breqtrrd |
⊢ ( 𝜑 → ( ( abs ‘ ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) + ( abs ‘ ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) ≤ ( ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 + ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) · 𝑅 ) ) |
| 283 |
137 228 218 229 282
|
letrd |
⊢ ( 𝜑 → ( abs ‘ ( ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) − ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) ≤ ( ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 + ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) · 𝑅 ) ) |
| 284 |
157
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) → ( abs ‘ ( ( ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) · Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ∈ ℝ ) |
| 285 |
86 284
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( abs ‘ ( ( ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) · Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ∈ ℝ ) |
| 286 |
86 157
|
fsumabs |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) · Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ≤ Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( abs ‘ ( ( ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) · Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) |
| 287 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) → 𝑅 ∈ ℝ ) |
| 288 |
222 287
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) → ( ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ) · 𝑅 ) ∈ ℝ ) |
| 289 |
138 149
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) → ( ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ∈ ℂ ) |
| 290 |
154
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) → Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ∈ ℂ ) |
| 291 |
289 290
|
absmuld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) → ( abs ‘ ( ( ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) · Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) = ( ( abs ‘ ( ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) · ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) |
| 292 |
|
elfzouz |
⊢ ( 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) → 𝑖 ∈ ( ℤ≥ ‘ ( 𝐼 + 1 ) ) ) |
| 293 |
|
uztrn |
⊢ ( ( 𝑖 ∈ ( ℤ≥ ‘ ( 𝐼 + 1 ) ) ∧ ( 𝐼 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 294 |
292 250 293
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 295 |
|
eluznn |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑖 ∈ ℕ ) |
| 296 |
10 295
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑖 ∈ ℕ ) |
| 297 |
296 140
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑖 + 1 ) ∈ ℝ+ ) |
| 298 |
296
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑖 ∈ ℝ+ ) |
| 299 |
12
|
3expia |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) ) → ( ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) → 𝐵 ≤ 𝐴 ) ) |
| 300 |
299
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℝ+ ∀ 𝑥 ∈ ℝ+ ( ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) → 𝐵 ≤ 𝐴 ) ) |
| 301 |
300
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ∀ 𝑛 ∈ ℝ+ ∀ 𝑥 ∈ ℝ+ ( ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) → 𝐵 ≤ 𝐴 ) ) |
| 302 |
|
nfcv |
⊢ Ⅎ 𝑛 ℝ+ |
| 303 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝑀 ≤ 𝑖 ∧ 𝑖 ≤ 𝑥 ) |
| 304 |
|
nfcv |
⊢ Ⅎ 𝑛 𝐵 |
| 305 |
|
nfcv |
⊢ Ⅎ 𝑛 ≤ |
| 306 |
304 305 64
|
nfbr |
⊢ Ⅎ 𝑛 𝐵 ≤ ⦋ 𝑖 / 𝑛 ⦌ 𝐴 |
| 307 |
303 306
|
nfim |
⊢ Ⅎ 𝑛 ( ( 𝑀 ≤ 𝑖 ∧ 𝑖 ≤ 𝑥 ) → 𝐵 ≤ ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) |
| 308 |
302 307
|
nfralw |
⊢ Ⅎ 𝑛 ∀ 𝑥 ∈ ℝ+ ( ( 𝑀 ≤ 𝑖 ∧ 𝑖 ≤ 𝑥 ) → 𝐵 ≤ ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) |
| 309 |
|
breq2 |
⊢ ( 𝑛 = 𝑖 → ( 𝑀 ≤ 𝑛 ↔ 𝑀 ≤ 𝑖 ) ) |
| 310 |
|
breq1 |
⊢ ( 𝑛 = 𝑖 → ( 𝑛 ≤ 𝑥 ↔ 𝑖 ≤ 𝑥 ) ) |
| 311 |
309 310
|
anbi12d |
⊢ ( 𝑛 = 𝑖 → ( ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ↔ ( 𝑀 ≤ 𝑖 ∧ 𝑖 ≤ 𝑥 ) ) ) |
| 312 |
67
|
breq2d |
⊢ ( 𝑛 = 𝑖 → ( 𝐵 ≤ 𝐴 ↔ 𝐵 ≤ ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) |
| 313 |
311 312
|
imbi12d |
⊢ ( 𝑛 = 𝑖 → ( ( ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) → 𝐵 ≤ 𝐴 ) ↔ ( ( 𝑀 ≤ 𝑖 ∧ 𝑖 ≤ 𝑥 ) → 𝐵 ≤ ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) ) |
| 314 |
313
|
ralbidv |
⊢ ( 𝑛 = 𝑖 → ( ∀ 𝑥 ∈ ℝ+ ( ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) → 𝐵 ≤ 𝐴 ) ↔ ∀ 𝑥 ∈ ℝ+ ( ( 𝑀 ≤ 𝑖 ∧ 𝑖 ≤ 𝑥 ) → 𝐵 ≤ ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) ) |
| 315 |
308 314
|
rspc |
⊢ ( 𝑖 ∈ ℝ+ → ( ∀ 𝑛 ∈ ℝ+ ∀ 𝑥 ∈ ℝ+ ( ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) → 𝐵 ≤ 𝐴 ) → ∀ 𝑥 ∈ ℝ+ ( ( 𝑀 ≤ 𝑖 ∧ 𝑖 ≤ 𝑥 ) → 𝐵 ≤ ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) ) |
| 316 |
298 301 315
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ∀ 𝑥 ∈ ℝ+ ( ( 𝑀 ≤ 𝑖 ∧ 𝑖 ≤ 𝑥 ) → 𝐵 ≤ ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) |
| 317 |
234
|
lep1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑖 ≤ ( 𝑖 + 1 ) ) |
| 318 |
236 317
|
jca |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑀 ≤ 𝑖 ∧ 𝑖 ≤ ( 𝑖 + 1 ) ) ) |
| 319 |
|
breq2 |
⊢ ( 𝑥 = ( 𝑖 + 1 ) → ( 𝑖 ≤ 𝑥 ↔ 𝑖 ≤ ( 𝑖 + 1 ) ) ) |
| 320 |
319
|
anbi2d |
⊢ ( 𝑥 = ( 𝑖 + 1 ) → ( ( 𝑀 ≤ 𝑖 ∧ 𝑖 ≤ 𝑥 ) ↔ ( 𝑀 ≤ 𝑖 ∧ 𝑖 ≤ ( 𝑖 + 1 ) ) ) ) |
| 321 |
|
eqvisset |
⊢ ( 𝑥 = ( 𝑖 + 1 ) → ( 𝑖 + 1 ) ∈ V ) |
| 322 |
|
eqtr3 |
⊢ ( ( 𝑥 = ( 𝑖 + 1 ) ∧ 𝑛 = ( 𝑖 + 1 ) ) → 𝑥 = 𝑛 ) |
| 323 |
9
|
equcoms |
⊢ ( 𝑥 = 𝑛 → 𝐴 = 𝐵 ) |
| 324 |
322 323
|
syl |
⊢ ( ( 𝑥 = ( 𝑖 + 1 ) ∧ 𝑛 = ( 𝑖 + 1 ) ) → 𝐴 = 𝐵 ) |
| 325 |
321 324
|
csbied |
⊢ ( 𝑥 = ( 𝑖 + 1 ) → ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 = 𝐵 ) |
| 326 |
325
|
eqcomd |
⊢ ( 𝑥 = ( 𝑖 + 1 ) → 𝐵 = ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ) |
| 327 |
326
|
breq1d |
⊢ ( 𝑥 = ( 𝑖 + 1 ) → ( 𝐵 ≤ ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ↔ ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ≤ ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) |
| 328 |
320 327
|
imbi12d |
⊢ ( 𝑥 = ( 𝑖 + 1 ) → ( ( ( 𝑀 ≤ 𝑖 ∧ 𝑖 ≤ 𝑥 ) → 𝐵 ≤ ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ↔ ( ( 𝑀 ≤ 𝑖 ∧ 𝑖 ≤ ( 𝑖 + 1 ) ) → ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ≤ ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) ) |
| 329 |
328
|
rspcv |
⊢ ( ( 𝑖 + 1 ) ∈ ℝ+ → ( ∀ 𝑥 ∈ ℝ+ ( ( 𝑀 ≤ 𝑖 ∧ 𝑖 ≤ 𝑥 ) → 𝐵 ≤ ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) → ( ( 𝑀 ≤ 𝑖 ∧ 𝑖 ≤ ( 𝑖 + 1 ) ) → ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ≤ ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) ) |
| 330 |
297 316 318 329
|
syl3c |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ≤ ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) |
| 331 |
294 330
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) → ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ≤ ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) |
| 332 |
221 220 331
|
abssuble0d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) → ( abs ‘ ( ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) = ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ) ) |
| 333 |
332
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) → ( ( abs ‘ ( ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) · ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) = ( ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ) · ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) |
| 334 |
291 333
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) → ( abs ‘ ( ( ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) · Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) = ( ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ) · ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) |
| 335 |
290
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) → ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 336 |
220 221
|
subge0d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) → ( 0 ≤ ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ) ↔ ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ≤ ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) |
| 337 |
331 336
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) → 0 ≤ ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ) ) |
| 338 |
138
|
peano2nnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) → ( 𝑖 + 1 ) ∈ ℕ ) |
| 339 |
338
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) → ( 𝑖 + 1 ) ∈ ℕ0 ) |
| 340 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
dchrisumlem1 |
⊢ ( ( 𝜑 ∧ ( 𝑖 + 1 ) ∈ ℕ0 ) → ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ≤ 𝑅 ) |
| 341 |
339 340
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) → ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ≤ 𝑅 ) |
| 342 |
335 287 222 337 341
|
lemul2ad |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) → ( ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ) · ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ≤ ( ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ) · 𝑅 ) ) |
| 343 |
334 342
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) → ( abs ‘ ( ( ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) · Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ≤ ( ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ) · 𝑅 ) ) |
| 344 |
86 284 288 343
|
fsumle |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( abs ‘ ( ( ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) · Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ≤ Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ) · 𝑅 ) ) |
| 345 |
222
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ) → ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ) ∈ ℂ ) |
| 346 |
86 280 345
|
fsummulc1 |
⊢ ( 𝜑 → ( Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ) · 𝑅 ) = Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ) · 𝑅 ) ) |
| 347 |
219
|
oveq1d |
⊢ ( 𝜑 → ( Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ) · 𝑅 ) = ( ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ) · 𝑅 ) ) |
| 348 |
346 347
|
eqtr3d |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( ⦋ 𝑖 / 𝑛 ⦌ 𝐴 − ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 ) · 𝑅 ) = ( ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ) · 𝑅 ) ) |
| 349 |
344 348
|
breqtrd |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( abs ‘ ( ( ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) · Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ≤ ( ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ) · 𝑅 ) ) |
| 350 |
159 285 225 286 349
|
letrd |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) · Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ≤ ( ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ) · 𝑅 ) ) |
| 351 |
137 159 218 225 283 350
|
le2addd |
⊢ ( 𝜑 → ( ( abs ‘ ( ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) − ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) + ( abs ‘ Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) · Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) ≤ ( ( ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 + ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) · 𝑅 ) + ( ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ) · 𝑅 ) ) ) |
| 352 |
129
|
2timesd |
⊢ ( 𝜑 → ( 2 · ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) = ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 + ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) ) |
| 353 |
129 119 129
|
ppncand |
⊢ ( 𝜑 → ( ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 + ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ) + ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ) ) = ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 + ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) ) |
| 354 |
129 119
|
addcomd |
⊢ ( 𝜑 → ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 + ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ) = ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 + ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) ) |
| 355 |
354
|
oveq1d |
⊢ ( 𝜑 → ( ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 + ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ) + ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ) ) = ( ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 + ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) + ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ) ) ) |
| 356 |
352 353 355
|
3eqtr2d |
⊢ ( 𝜑 → ( 2 · ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) = ( ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 + ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) + ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ) ) ) |
| 357 |
356
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 · ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) · 𝑅 ) = ( ( ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 + ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) + ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ) ) · 𝑅 ) ) |
| 358 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 359 |
358 129 280
|
mul32d |
⊢ ( 𝜑 → ( ( 2 · ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) · 𝑅 ) = ( ( 2 · 𝑅 ) · ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) ) |
| 360 |
217
|
recnd |
⊢ ( 𝜑 → ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 + ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) ∈ ℂ ) |
| 361 |
224
|
recnd |
⊢ ( 𝜑 → ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ) ∈ ℂ ) |
| 362 |
360 361 280
|
adddird |
⊢ ( 𝜑 → ( ( ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 + ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) + ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ) ) · 𝑅 ) = ( ( ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 + ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) · 𝑅 ) + ( ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ) · 𝑅 ) ) ) |
| 363 |
357 359 362
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 2 · 𝑅 ) · ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) = ( ( ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 + ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) · 𝑅 ) + ( ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 ) · 𝑅 ) ) ) |
| 364 |
351 363
|
breqtrrd |
⊢ ( 𝜑 → ( ( abs ‘ ( ( ⦋ ( 𝐽 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) − ( ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 · Σ 𝑛 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) + ( abs ‘ Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( ⦋ ( 𝑖 + 1 ) / 𝑛 ⦌ 𝐴 − ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) · Σ 𝑛 ∈ ( 0 ..^ ( 𝑖 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) ) ≤ ( ( 2 · 𝑅 ) · ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) ) |
| 365 |
95 160 104 216 364
|
letrd |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) ≤ ( ( 2 · 𝑅 ) · ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) ) |
| 366 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 367 |
|
nn0ge0 |
⊢ ( 2 ∈ ℕ0 → 0 ≤ 2 ) |
| 368 |
366 367
|
mp1i |
⊢ ( 𝜑 → 0 ≤ 2 ) |
| 369 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 370 |
127
|
absge0d |
⊢ ( 𝜑 → 0 ≤ ( abs ‘ Σ 𝑛 ∈ ( 0 ..^ ( 𝐽 + 1 ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ) ) |
| 371 |
369 259 15 370 262
|
letrd |
⊢ ( 𝜑 → 0 ≤ 𝑅 ) |
| 372 |
97 15 368 371
|
mulge0d |
⊢ ( 𝜑 → 0 ≤ ( 2 · 𝑅 ) ) |
| 373 |
24
|
nnrpd |
⊢ ( 𝜑 → ( 𝐼 + 1 ) ∈ ℝ+ ) |
| 374 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝑀 ≤ 𝑈 ∧ 𝑈 ≤ 𝑥 ) |
| 375 |
304 305 106
|
nfbr |
⊢ Ⅎ 𝑛 𝐵 ≤ ⦋ 𝑈 / 𝑛 ⦌ 𝐴 |
| 376 |
374 375
|
nfim |
⊢ Ⅎ 𝑛 ( ( 𝑀 ≤ 𝑈 ∧ 𝑈 ≤ 𝑥 ) → 𝐵 ≤ ⦋ 𝑈 / 𝑛 ⦌ 𝐴 ) |
| 377 |
302 376
|
nfralw |
⊢ Ⅎ 𝑛 ∀ 𝑥 ∈ ℝ+ ( ( 𝑀 ≤ 𝑈 ∧ 𝑈 ≤ 𝑥 ) → 𝐵 ≤ ⦋ 𝑈 / 𝑛 ⦌ 𝐴 ) |
| 378 |
|
breq2 |
⊢ ( 𝑛 = 𝑈 → ( 𝑀 ≤ 𝑛 ↔ 𝑀 ≤ 𝑈 ) ) |
| 379 |
|
breq1 |
⊢ ( 𝑛 = 𝑈 → ( 𝑛 ≤ 𝑥 ↔ 𝑈 ≤ 𝑥 ) ) |
| 380 |
378 379
|
anbi12d |
⊢ ( 𝑛 = 𝑈 → ( ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) ↔ ( 𝑀 ≤ 𝑈 ∧ 𝑈 ≤ 𝑥 ) ) ) |
| 381 |
108
|
breq2d |
⊢ ( 𝑛 = 𝑈 → ( 𝐵 ≤ 𝐴 ↔ 𝐵 ≤ ⦋ 𝑈 / 𝑛 ⦌ 𝐴 ) ) |
| 382 |
380 381
|
imbi12d |
⊢ ( 𝑛 = 𝑈 → ( ( ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) → 𝐵 ≤ 𝐴 ) ↔ ( ( 𝑀 ≤ 𝑈 ∧ 𝑈 ≤ 𝑥 ) → 𝐵 ≤ ⦋ 𝑈 / 𝑛 ⦌ 𝐴 ) ) ) |
| 383 |
382
|
ralbidv |
⊢ ( 𝑛 = 𝑈 → ( ∀ 𝑥 ∈ ℝ+ ( ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) → 𝐵 ≤ 𝐴 ) ↔ ∀ 𝑥 ∈ ℝ+ ( ( 𝑀 ≤ 𝑈 ∧ 𝑈 ≤ 𝑥 ) → 𝐵 ≤ ⦋ 𝑈 / 𝑛 ⦌ 𝐴 ) ) ) |
| 384 |
377 383
|
rspc |
⊢ ( 𝑈 ∈ ℝ+ → ( ∀ 𝑛 ∈ ℝ+ ∀ 𝑥 ∈ ℝ+ ( ( 𝑀 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥 ) → 𝐵 ≤ 𝐴 ) → ∀ 𝑥 ∈ ℝ+ ( ( 𝑀 ≤ 𝑈 ∧ 𝑈 ≤ 𝑥 ) → 𝐵 ≤ ⦋ 𝑈 / 𝑛 ⦌ 𝐴 ) ) ) |
| 385 |
17 300 384
|
sylc |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ( ( 𝑀 ≤ 𝑈 ∧ 𝑈 ≤ 𝑥 ) → 𝐵 ≤ ⦋ 𝑈 / 𝑛 ⦌ 𝐴 ) ) |
| 386 |
18 19
|
jca |
⊢ ( 𝜑 → ( 𝑀 ≤ 𝑈 ∧ 𝑈 ≤ ( 𝐼 + 1 ) ) ) |
| 387 |
|
breq2 |
⊢ ( 𝑥 = ( 𝐼 + 1 ) → ( 𝑈 ≤ 𝑥 ↔ 𝑈 ≤ ( 𝐼 + 1 ) ) ) |
| 388 |
387
|
anbi2d |
⊢ ( 𝑥 = ( 𝐼 + 1 ) → ( ( 𝑀 ≤ 𝑈 ∧ 𝑈 ≤ 𝑥 ) ↔ ( 𝑀 ≤ 𝑈 ∧ 𝑈 ≤ ( 𝐼 + 1 ) ) ) ) |
| 389 |
|
eqvisset |
⊢ ( 𝑥 = ( 𝐼 + 1 ) → ( 𝐼 + 1 ) ∈ V ) |
| 390 |
|
eqtr3 |
⊢ ( ( 𝑥 = ( 𝐼 + 1 ) ∧ 𝑛 = ( 𝐼 + 1 ) ) → 𝑥 = 𝑛 ) |
| 391 |
390 323
|
syl |
⊢ ( ( 𝑥 = ( 𝐼 + 1 ) ∧ 𝑛 = ( 𝐼 + 1 ) ) → 𝐴 = 𝐵 ) |
| 392 |
389 391
|
csbied |
⊢ ( 𝑥 = ( 𝐼 + 1 ) → ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 = 𝐵 ) |
| 393 |
392
|
eqcomd |
⊢ ( 𝑥 = ( 𝐼 + 1 ) → 𝐵 = ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) |
| 394 |
393
|
breq1d |
⊢ ( 𝑥 = ( 𝐼 + 1 ) → ( 𝐵 ≤ ⦋ 𝑈 / 𝑛 ⦌ 𝐴 ↔ ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ≤ ⦋ 𝑈 / 𝑛 ⦌ 𝐴 ) ) |
| 395 |
388 394
|
imbi12d |
⊢ ( 𝑥 = ( 𝐼 + 1 ) → ( ( ( 𝑀 ≤ 𝑈 ∧ 𝑈 ≤ 𝑥 ) → 𝐵 ≤ ⦋ 𝑈 / 𝑛 ⦌ 𝐴 ) ↔ ( ( 𝑀 ≤ 𝑈 ∧ 𝑈 ≤ ( 𝐼 + 1 ) ) → ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ≤ ⦋ 𝑈 / 𝑛 ⦌ 𝐴 ) ) ) |
| 396 |
395
|
rspcv |
⊢ ( ( 𝐼 + 1 ) ∈ ℝ+ → ( ∀ 𝑥 ∈ ℝ+ ( ( 𝑀 ≤ 𝑈 ∧ 𝑈 ≤ 𝑥 ) → 𝐵 ≤ ⦋ 𝑈 / 𝑛 ⦌ 𝐴 ) → ( ( 𝑀 ≤ 𝑈 ∧ 𝑈 ≤ ( 𝐼 + 1 ) ) → ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ≤ ⦋ 𝑈 / 𝑛 ⦌ 𝐴 ) ) ) |
| 397 |
373 385 386 396
|
syl3c |
⊢ ( 𝜑 → ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ≤ ⦋ 𝑈 / 𝑛 ⦌ 𝐴 ) |
| 398 |
103 111 98 372 397
|
lemul2ad |
⊢ ( 𝜑 → ( ( 2 · 𝑅 ) · ⦋ ( 𝐼 + 1 ) / 𝑛 ⦌ 𝐴 ) ≤ ( ( 2 · 𝑅 ) · ⦋ 𝑈 / 𝑛 ⦌ 𝐴 ) ) |
| 399 |
95 104 112 365 398
|
letrd |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑖 ∈ ( ( 𝐼 + 1 ) ..^ ( 𝐽 + 1 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) · ⦋ 𝑖 / 𝑛 ⦌ 𝐴 ) ) ≤ ( ( 2 · 𝑅 ) · ⦋ 𝑈 / 𝑛 ⦌ 𝐴 ) ) |
| 400 |
94 399
|
eqbrtrd |
⊢ ( 𝜑 → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ 𝐽 ) − ( seq 1 ( + , 𝐹 ) ‘ 𝐼 ) ) ) ≤ ( ( 2 · 𝑅 ) · ⦋ 𝑈 / 𝑛 ⦌ 𝐴 ) ) |