Metamath Proof Explorer


Theorem dchrrcl

Description: Reverse closure for a Dirichlet character. (Contributed by Mario Carneiro, 12-May-2016)

Ref Expression
Hypotheses dchrrcl.g G=DChrN
dchrrcl.b D=BaseG
Assertion dchrrcl XDN

Proof

Step Hyp Ref Expression
1 dchrrcl.g G=DChrN
2 dchrrcl.b D=BaseG
3 df-dchr DChr=n/n/zxmulGrpzMndHommulGrpfld|BasezUnitz×0x/bBasendxb+ndxf×b×b
4 3 dmmptss domDChr
5 n0i XD¬D=
6 ndmfv ¬NdomDChrDChrN=
7 1 6 eqtrid ¬NdomDChrG=
8 fveq2 G=BaseG=Base
9 base0 =Base
10 8 2 9 3eqtr4g G=D=
11 7 10 syl ¬NdomDChrD=
12 5 11 nsyl2 XDNdomDChr
13 4 12 sselid XDN