Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Characters of Z/nZ
dchrrcl
Next ⟩
dchrmhm
Metamath Proof Explorer
Ascii
Unicode
Theorem
dchrrcl
Description:
Reverse closure for a Dirichlet character.
(Contributed by
Mario Carneiro
, 12-May-2016)
Ref
Expression
Hypotheses
dchrrcl.g
⊢
G
=
DChr
⁡
N
dchrrcl.b
⊢
D
=
Base
G
Assertion
dchrrcl
⊢
X
∈
D
→
N
∈
ℕ
Proof
Step
Hyp
Ref
Expression
1
dchrrcl.g
⊢
G
=
DChr
⁡
N
2
dchrrcl.b
⊢
D
=
Base
G
3
df-dchr
⊢
DChr
=
n
∈
ℕ
⟼
⦋
ℤ
/
n
ℤ
/
z
⦌
⦋
x
∈
mulGrp
z
MndHom
mulGrp
ℂ
fld
|
Base
z
∖
Unit
⁡
z
×
0
⊆
x
/
b
⦌
Base
ndx
b
+
ndx
∘
f
⁡
×
↾
b
×
b
4
3
dmmptss
⊢
dom
⁡
DChr
⊆
ℕ
5
n0i
⊢
X
∈
D
→
¬
D
=
∅
6
ndmfv
⊢
¬
N
∈
dom
⁡
DChr
→
DChr
⁡
N
=
∅
7
1
6
eqtrid
⊢
¬
N
∈
dom
⁡
DChr
→
G
=
∅
8
fveq2
⊢
G
=
∅
→
Base
G
=
Base
∅
9
base0
⊢
∅
=
Base
∅
10
8
2
9
3eqtr4g
⊢
G
=
∅
→
D
=
∅
11
7
10
syl
⊢
¬
N
∈
dom
⁡
DChr
→
D
=
∅
12
5
11
nsyl2
⊢
X
∈
D
→
N
∈
dom
⁡
DChr
13
4
12
sselid
⊢
X
∈
D
→
N
∈
ℕ