Metamath Proof Explorer


Theorem dchrzrh1

Description: Value of a Dirichlet character at one. (Contributed by Mario Carneiro, 4-May-2016)

Ref Expression
Hypotheses dchrmhm.g G=DChrN
dchrmhm.z Z=/N
dchrmhm.b D=BaseG
dchrelbas4.l L=ℤRHomZ
dchrzrh1.x φXD
Assertion dchrzrh1 φXL1=1

Proof

Step Hyp Ref Expression
1 dchrmhm.g G=DChrN
2 dchrmhm.z Z=/N
3 dchrmhm.b D=BaseG
4 dchrelbas4.l L=ℤRHomZ
5 dchrzrh1.x φXD
6 1 3 dchrrcl XDN
7 5 6 syl φN
8 7 nnnn0d φN0
9 2 zncrng N0ZCRing
10 crngring ZCRingZRing
11 eqid 1Z=1Z
12 4 11 zrh1 ZRingL1=1Z
13 8 9 10 12 4syl φL1=1Z
14 13 fveq2d φXL1=X1Z
15 1 2 3 dchrmhm DmulGrpZMndHommulGrpfld
16 15 5 sselid φXmulGrpZMndHommulGrpfld
17 eqid mulGrpZ=mulGrpZ
18 17 11 ringidval 1Z=0mulGrpZ
19 eqid mulGrpfld=mulGrpfld
20 cnfld1 1=1fld
21 19 20 ringidval 1=0mulGrpfld
22 18 21 mhm0 XmulGrpZMndHommulGrpfldX1Z=1
23 16 22 syl φX1Z=1
24 14 23 eqtrd φXL1=1