Metamath Proof Explorer


Theorem deg1invg

Description: The degree of the negated polynomial is the same as the original. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses deg1addle.y Y=Poly1R
deg1addle.d D=deg1R
deg1addle.r φRRing
deg1invg.b B=BaseY
deg1invg.n N=invgY
deg1invg.f φFB
Assertion deg1invg φDNF=DF

Proof

Step Hyp Ref Expression
1 deg1addle.y Y=Poly1R
2 deg1addle.d D=deg1R
3 deg1addle.r φRRing
4 deg1invg.b B=BaseY
5 deg1invg.n N=invgY
6 deg1invg.f φFB
7 1 ply1lmod RRingYLMod
8 3 7 syl φYLMod
9 1 ply1sca2 IR=ScalarY
10 eqid Y=Y
11 eqid 1IR=1IR
12 eqid invgR=invgR
13 12 grpinvfvi invgR=invgIR
14 4 5 9 10 11 13 lmodvneg1 YLModFBinvgR1IRYF=NF
15 8 6 14 syl2anc φinvgR1IRYF=NF
16 15 fveq2d φDinvgR1IRYF=DNF
17 eqid RLRegR=RLRegR
18 fvi RRingIR=R
19 3 18 syl φIR=R
20 19 fveq2d φ1IR=1R
21 20 fveq2d φinvgR1IR=invgR1R
22 eqid UnitR=UnitR
23 17 22 unitrrg RRingUnitRRLRegR
24 3 23 syl φUnitRRLRegR
25 eqid 1R=1R
26 22 25 1unit RRing1RUnitR
27 22 12 unitnegcl RRing1RUnitRinvgR1RUnitR
28 3 26 27 syl2anc2 φinvgR1RUnitR
29 24 28 sseldd φinvgR1RRLRegR
30 21 29 eqeltrd φinvgR1IRRLRegR
31 1 2 3 4 17 10 30 6 deg1vsca φDinvgR1IRYF=DF
32 16 31 eqtr3d φDNF=DF